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Abstract

This paper discusses the adaptation of the PVS theorem prover for performing analysis of
real-time systems written in the ASTRAL formal speci+cation language. Several issues arose
during the encoding of ASTRAL that are relevant to the encoding of many real-time speci+-
cation languages such as encoding formulas as types, handling partial functions, dealing with
noninterleaved concurrency, and de+ning irregular operators. These issues and possible solutions
are presented as well as how they were handled in the ASTRAL encoding. A translator was
written that translates any ASTRAL speci+cation into its corresponding PVS encoding. After
performing the proofs of several systems using their translations, PVS strategies were developed
to automate the proofs of certain types of properties. In particular, strategies are presented for
fully automating the proofs of certain classes of untimed properties. In addition, strategies were
developed for partially automating the derivation of timed executions using transition steps. The
encoding was used as the basis for a fully automated transition sequence generator tool, which
has a wide variety of applications. c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

A real-time system is a system that must perform its actions within speci+ed time
bounds. With the advent of cheap processing power and increasingly sophisticated
consumer demands, real-time systems have become commonplace in everything from
refrigerators to automobiles. Besides such numerous everyday uses, real-time systems
are also being employed in more complex and potentially deadly applications such
as weapons systems and nuclear reactor controls where deviation from critical timing
requirements can result in disastrous loss of lives and=or property. It is thus desirable
to extensively test and verify the designs of these systems to gain assurance that
such disasters will not occur. A number of formal methods for real-time systems have

� A preliminary version of this paper appeared in Proc. 5th AMAST Workshop on Real-Time and
Probabilistic Systems, Springer, Berlin, 1999, pp. 315–333.
E-mail address: paul.kolano@trustedsyslabs.com (P.Z. Kolano)

0304-3975/02/$ - see front matter c© 2002 Elsevier Science B.V. All rights reserved.
PII: S0304 -3975(01)00045 -7



54 P.Z. Kolano / Theoretical Computer Science 282 (2002) 53–99

been proposed [18] that provide a framework under which developers can eliminate
ambiguity, reason rigorously about system design, and prove that critical requirements
are met using well-de+ned mathematical techniques.

Real-time systems are characterized by concurrency, asynchrony, nondeterminism,
and dependence upon the external operating environment, which make the formal proofs
of even simple real-time systems nontrivial. Even when the formal proofs of real-
time systems can be performed, there is no guarantee that the proofs are valid due
to Aaws in reasoning caused by human error. To provide maximal assurance that the
critical requirements are met, a mechanical theorem prover must be used. A mechanical
theorem prover prevents Aaws in reasoning by allowing proofs to proceed only in sound,
well-de+ned steps. Besides keeping reasoning sound, theorem provers have many other
bene+ts. They assist in the manipulation of formulas and have the ability to +nish trivial
subproofs automatically. Theorem provers also provide bookkeeping features such as
recording the completion status of each proof. In addition, proofs can be saved, which
allows them to be rerun during the maintenance phase and provides a standard proof
documentation style. Finally, a theorem prover aids in the rigorous de+nition of a
speci+cation language by allowing its semantics to be formally de+ned within the
language of the prover instead of using a “pencil and paper” semantics.

The use of a mechanical theorem prover also suDers from a number of drawbacks,
however, that can often outweigh the bene+ts. In hand proofs, many details are ob-
vious to human intuition and can be labeled “trivial” or “obvious” and not warrant
further mention. In a theorem prover proof, however, these proofs must be performed
explicitly and may oftentimes encompass a large number of theorem prover steps. An-
other drawback of theorem proving is that formulas can become unrecognizable due to
either the association between the original speci+cation language and the language of
the prover or to the rewriting mechanisms of the prover’s decision procedures, which
can output subgoals that have nothing in common with the original goal. A related
drawback is that it is sometimes diFcult to examine a failed proof attempt and locate
the portion of the original speci+cation that caused the failure. This is due to either
the rewriting of the decision procedures as mentioned above or to the fact that a proof
in a theorem prover must often be performed in a diDerent order and=or in a diDerent
fashion than in the corresponding proof by hand. This makes it diFcult to determine
what the problem was in the original speci+cation that caused the failure.

The most signi+cant drawback of using a mechanical theorem prover is the large
number of ways in which time and eDort can be wasted by performing unnecessary or
repeated steps. Most of these result from a lack of careful planning such as invoking
the prover while there are still many simple errors in the speci+cation, invoking the
decision procedures before enough information is present or when too much information
is present, and=or choosing the ordering of the proofs or the plan of attack in an ad
hoc fashion. A lack of planning can also result in duplicate proofs such as when a
prover goal is split into subgoals too early.

To make theorem proving more practical, it is necessary to develop techniques
to alleviate as many of these drawbacks as possible. This paper discusses two such



P.Z. Kolano / Theoretical Computer Science 282 (2002) 53–99 55

techniques in the context of real-time speci+cation languages. In particular, it discusses
the encoding of ASTRAL [7], which is a speci+cation language for real-time systems,
into the PVS theorem prover [10] in a way that preserves the constructs of ASTRAL
as much as possible. In this way, the user can determine more easily why the proof
failed in the original speci+cation and results will be less likely to become unrecog-
nizable since they will closely mirror the original language. During the encoding, a
number of issues were encountered that are relevant to the encoding of many real-time
speci+cation languages. The diDerent choices for handling these issues are presented
as well as the decisions that were made for ASTRAL.

The other technique is to perform the proofs of a variety of diDerent systems and en-
capsulate recurring proof steps into prede+ned automated strategies that can be applied
by the user when similar situations arise. In this way, trivial proofs can stay trivial
even though many complex actions may be taking place behind the scenes. Also, the
possibility of splitting goals too early or invoking the decision procedures when there
is too much or too little information is minimized since the strategies are written to
perform these actions in the most eFcient manner. The automated strategies can also
be used to construct more complex tools that assist in the proof planning process. This
paper discusses automated strategies for discharging obligations frequently occurring
within ASTRAL proofs. In addition, a transition sequence generation tool was devel-
oped that can be used to help visualize the operation of the system when deciding on
a plan of attack.

Techniques for resolving the other issues such as building a hierarchy of tools to
eliminate the majority of errors in an eFcient manner before the theorem prover is
invoked, choosing a proof order that minimizes duplication when errors are found, and
developing a high-level proof sketch that can be used as a blueprint for the associated
theorem prover proof are covered in [21].

The remainder of this paper is organized as follows. In Sections 2 and 3, brief
overviews of ASTRAL and PVS are given. In Section 4, the issues encountered during
the encoding of ASTRAL are discussed. Section 5 describes the ASTRAL to PVS
translator. Strategies for automating ASTRAL proofs and the use of PVS to develop
a transition sequence generator are presented in Section 6. Section 7 discusses related
work. Finally, Section 8 provides some conclusions and directions for future research.

2. ASTRAL

Many of the examples in this paper are taken from the speci+cation of an elevator
control system that was adapted from a description in [11], where an n story building
is serviced by the elevator. A panel of n buttons is located inside the elevator car to
request that the elevator move to a given Aoor. Each Aoor in the building also has a
button panel, which has an up and a down button to request that the elevator stop at
the Aoor and move in the corresponding direction. The elevator must service all the
requests in one direction before it can move in the opposite direction. When the elevator
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arrives at a Aoor en route to another destination and no request has been made inside
the elevator for that Aoor, nor has a request been made at that Aoor’s button panel
for movement in the same direction, the elevator continues on to its next destination
without stopping or opening the door. If such a request has been made, however, then
the elevator stops and opens the door. The door is always opened for a duration of
t stop at which point it closes. When the elevator arrives at a Aoor that is the last
request in its direction of movement, the door opens and then its behavior depends on
the situation in the building. If the button panel at the elevator’s location has requested
movement in the same direction, the user must get in and push the desired Aoor on the
elevator’s button panel before the door has +nished closing. Otherwise, the elevator is
free to move in the opposite direction to service another request, if one exists. The
critical timing requirement of the elevator system is that the elevator must service any
request within t service request time of when the button was pushed.

In ASTRAL [7], a real-time system is described as a collection of state machine
speci+cations, each of them representing a process type of which there may be multiple,
statically generated, instances. There is also a global speci1cation, which contains
declarations for types and constants that are shared among more than one process type,
as well as assumptions about the global environment and critical requirements for the
whole system.

An ASTRAL process speci1cation consists of a sequence of levels. Each level is
an abstract data type view of the system being speci+ed. The +rst (“top level”) view
is a very abstract model of what constitutes the process (types, constants, variables),
what the process does (state transitions), and the critical requirements the process must
meet (invariants and schedules). Lower levels are increasingly more detailed with the
lowest level corresponding closely to high-level code. Fig. 1 shows one of the process
types of the elevator control system. The Elevator Button Panel process represents the
button panel located within an elevator car.

The process being speci+ed is thought of as being in various states, with one state
diDerentiated from another by the values of its state variables, which can be changed
only by means of state transitions. Every process can export both state variables and
transitions; as a consequence, the former are readable by other processes and the ex-
ternal environment while the latter are executable from the external environment. Pro-
cesses communicate by broadcasting the values of exported variables and the start and
end times of exported transitions. In the Elevator Button Panel process, the Aoor re-
quested variable and the request Aoor transition are exported. The position, door open,
and door moving variables are imported from the elevator process and a few types and
constants are imported from the global speci+cation.

Transitions are described in terms of entry and exit assertions, where entry assertions
describe the constraints that state variables must satisfy in order for the transition to
+re, and exit assertions describe the constraints that are ful+lled by state variables after
the transition has +red. Variables are changed atomically at the end of a transition’s
execution with variables not referenced in the exit assertion remaining unchanged. An
explicit nonnull duration is associated with each transition.
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PROCESS Elevator Button Panel
IMPORT
floor, request dur, clear dur,
elevator, elevator.position,
elevator.door open,
elevator.door moving

EXPORT
floor requested, request floor

VARIABLE
floor requested(floor): boolean

INITIAL
FORALL f: floor
(∼floor requested(f))

TRANSITION request floor(f: floor)
ENTRY [TIME: request dur]
∼floor requested(f)

EXIT
floor requested(f)

Becomes TRUE
TRANSITION clear floor request
ENTRY [TIME: clear dur]
floor requested(elevator.position)

& ∼elevator.door open
& elevator.door moving
EXIT
floor requested(elevator.position)
Becomes FALSE

ENVIRONMENT
( FORALL f: floor

( Change(floor requested(f), now)
& ∼floor requested(f)

→ FORALL t: time
( Start(request floor(f))6t
& t6now

→ ∼Call(request floor(f), t))))
& ( Change(elevator.door moving, now)
& elevator.door moving
& elevator.door open

→ FORALL t: time
( t¿Change2 (elevator.door moving)

→ ∼Call(request floor(
elevator.position), t)))

INVARIANT
FORALL f: floor
( Change(floor requested(f), now)
& ∼floor requested(f)

→ EXISTS t: time
( Change2 (floor requested(f))¡t
& t6now
& past(elevator.position, t)=f
& ∼ past(elevator.door open, t)
& past(elevator.door moving, t)))

Fig. 1. The Elevator Button Panel process.

Each transition is either a local transition or an exported transition. A local transition
is enabled when its entry assertion is satis+ed. An exported transition, however, is
only enabled when both its entry assertion is satis+ed and when it has been called
(i.e. invoked) from the external environment. Transitions are executed as soon as they
are enabled assuming no other transition for that process instance is executing. If
two or more transitions are enabled simultaneously, a nondeterministic choice will
occur and only one of them will execute. In the Elevator Button Panel process, the
clear Aoor request transition is enabled when the elevator is currently stopped with its
door opening at a Aoor that has been requested but not yet serviced.

In addition to specifying system state (through process variables and constants) and
system evolution (through transitions), an ASTRAL speci+cation also de+nes system
critical requirements and assumptions about the behavior of the environment that in-
teracts with the system. The behavior of the environment is expressed by means of
environment clauses, which describe assumptions about the pattern of invocation of
external transitions. ASTRAL also allows assumptions about the context provided by
other processes in the system to be expressed in the imported variable clause. This
clause describes patterns of changes to the values of imported variables, including



58 P.Z. Kolano / Theoretical Computer Science 282 (2002) 53–99

timing information about transitions exported by other processes that may be used by
the process being speci+ed. Critical requirements are expressed by means of invariants
and schedules. Invariants represent requirements that must hold in every state reach-
able from the initial state, no matter what the behavior of the external environment is,
while schedules represent additional properties that must be satis+ed provided that the
external environment and the other processes behave as assumed.

The requirement and assumption clauses are expressed using a combination of +rst-
order logic and ASTRAL-speci+c constructs. The main constructs are the timed oper-
ators used to express timing requirements. The start operator, Start(trans1, t1), takes
a transition trans1 and a time t1 and returns true iD the last start of trans1 was at t1.
Similarly, the end and call operators, End(trans1, t1) and Call(trans1, t1), return true
iD the last end or the last call of trans1 was at t1. The change operator, Change(A; t),
takes an expression A and a time t and returns true iD the last time A changed value
was at t. The past operator, past(A; t), takes an expression A and a time t and returns
the value of A at t. In addition to these operators, a special global variable now is used
to denote the current time, where the time domain is the nonnegative real numbers.

Using these operators, a variety of complex properties can be expressed. For example,
the invariant of the Elevator Button Panel process states that between a change to
Aoor requested(f) and a change back to ∼Aoor requested(f) for any Aoor f, the
elevator has been at f and its door has started opening. The +rst portion of the
environment states that any pushes to the button for Aoor f should be ignored when
Aoor requested(f) is already true. The second portion states that requests cannot be
made of the elevator to stop at a Aoor between when the door starts opening on
that Aoor until when it starts closing. Note that both the invariant and environment
use the operator Change2(A; t), which is true iD the second change in the past to the
value of expression A occurred at time t. An introduction and complete overview of
the ASTRAL language can be found in [7]. For the interested reader, the complete
speci+cation of the elevator system is given in the appendix.

Rather than implementing a theorem prover for ASTRAL from scratch, it was de-
cided to take advantage of an existing general-purpose theorem prover adapted for
use with ASTRAL. PVS was considered ideal for ASTRAL given its powerful typing
system, higher-order facilities, heavily automated decision procedures, and ease of use.
Other theorem provers were also considered, including HOL [15] and ACL2 [19]. HOL
does not have the usability of PVS and its decision procedures are not as powerful
[14]. ACL2 is also not as usable as PVS and has limited or no support for arbitrary
quanti+cation and real numbers [31] which are both required for ASTRAL.

3. PVS

The prototype veri+cation system (PVS) [10] is a powerful interactive theorem
prover based on typed higher-order logic. A PVS speci+cation consists of a modu-
lar collection of theories. A theory may be parameterized to support polymorphism.
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Declarations in one theory can be referenced in another theory by using an importing
clause. Parameterized theories can be imported either with explicit parameters or with-
out parameters. If left without parameters, PVS attempts to instantiate the theory based
on the use of its declarations within the importing theory. Most single parameter the-
ories can be instantiated automatically by PVS, but theories with complex or multiple
parameters often need to be instantiated explicitly in the referring theory.

The PVS language is very Aexible and expressions can contain arbitrary quanti+-
cation, recursion, and higher-order constructs. With these facilities, PVS can specify
most, if not all, statements of higher-level programming languages. For example, the
mapcar function in Lisp can be expressed as the following.

mapcar(f: [T1→ T2], l: list[T1]): RECURSIVE list[T2] =
CASES l OF

null: null,
cons(x, y): cons(f(x), mapcar(f, y))

ENDCASES
MEASURE (LAMBDA (f: [T1→ T2], l: list[T1]): length(l))

The measure at the end of the mapcar de+nition must be given in every recursive PVS
function de+nition. It has the same signature as the associated function and de+nes
an expression that decreases in each recursive iteration, which is used to prove the
termination of the function.

A PVS theory declaration consists of a set of types, constants, axioms, and theo-
rems. PVS has a very expressive typing language, which includes functions, arrays,
sets, tuples, enumerated types, and predicate subtypes. Types may be interpreted or
uninterpreted. Interpreted types are de+ned based on existing types, while uninterpreted
types must be de+ned axiomatically. Predicate subtypes allow the expression of com-
plex types that must satisfy a given constraint. For example, the even numbers can be
de+ned as shown below.

even int: TYPE={i: int | (EXISTS (j: int): 2 * j = i)}
For any assignment or substitution that involves a predicate subtype, PVS generates
type correctness conditions (TCCs), which are obligations that must be proved in order
for the rest of the proof to be valid. For example, consider the following declaration.

e plus 2(e: even int): even int = e+2

PVS generates the TCC shown below for the de+nition of e plus 2.

% Subtype TCC generated (line 7) for e + 2
e plus 2 TCC1: OBLIGATION
(FORALL (e: even int): (EXISTS (j: int): 2 * j = e + 2))

That is, it must be shown that adding two to an even number is still an even number.
Otherwise, the de+nition of e plus 2 violates its stated type.

Like types, constants can either be interpreted or uninterpreted. The value of an
interpreted constant is stated explicitly, whereas the value of an uninterpreted constant
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is de+ned axiomatically. For example, the de+nition of push in

stack: TYPE= list[T];
push(e: T, s: stack): stack = cons(e, s);

is an interpreted constant, because the exact eDect of a push statement can be deter-
mined by expanding its de+nition. The de+nition of push in

stack: TYPE;
push: [[T, stack]→ stack];

is uninterpreted because all that is known about push is that applying it to a tuple
of type [T , stack] returns a stack of unknown content. In the former de+nition, the
exact consequence of the push operation is given in terms of list operations. To express
properties about an uninterpreted constant, however, axioms must be used. For example,
in the previous declaration, the following would be appropriate:

top of push: AXIOM
top(push(e, s)) = e

This states that no matter how stack, push, and top are implemented, applying top to the
stack resulting from a push operation will result in the element just pushed. In general,
axioms describe anything that is considered to be a “truth” in a theory. Besides types,
constants, and axioms, the other basic component of a theory are theorems, which are
hypotheses that are thought to be true, but that need to be proven with the help of the
prover.

When the PVS prover is invoked on a theorem, the theorem is displayed in the form
of a sequent. A sequent consists of a set of antecedents and a set of consequents, where
if A1; : : : ; An are antecedents and C1; : : : ; Cn are consequents in the current sequent, then
the current goal is (A1& : : :&An)→ (C1| : : : |Cn). It is the user’s job to direct PVS with
prover commands such as instantiating quanti+ers and introducing lemmas to show
that either (1) there exists an i such that Ai is false, (2) there exists an i such that
Ci is true, or (3) there exists a pair (i; j) such that Ai =Cj. PVS maintains a proof
tree, which consists of all of the subgoals generated during a proof. Initially, when the
prover is invoked on a theorem, the proof tree contains only the sequent form of that
theorem. As the proof proceeds, subgoals may be generated and proved. To prove that
a particular goal in the proof tree holds, all of its subgoals must be proved true. PVS
allows the user to de+ne strategies, which are collections of prover commands that
can be used to automate frequently occurring proof patterns.

4. Encoding issues

While encoding ASTRAL within PVS, a number of issues arose that needed to
be handled. Several of these issues are not exclusive to ASTRAL and occur in many
diDerent real-time speci+cation languages. The following sections discuss some of these
issues and how they were handled in the ASTRAL encoding.
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4.1. Formulas as types

In many real-time speci+cation languages, a single formula may have multiple values
depending on the temporal context in which it is evaluated. Depending on the language,
the temporal context may be an explicit clock variable, or implicitly derivable from
the formula. To encode such languages into a theorem prover, it is necessary to de+ne
formulas as types that can be evaluated in diDerent contexts.

Two diDerent approaches have been used to encode formulas as types in PVS. In
the TRIO to PVS encoding [1], an uninterpreted “TRIO formula” type is introduced
to handle this issue. In TRIO, the current time is always implicit, but the values of
formulas in the past and future can be obtained relative to the current time using
the dist operator, dist(A; t), which takes a formula A and a relative time t and gives
the value of A at t time units from the current time. In the TRIO encoding, the
dist operator is de+ned as a function of type [[TRIO formula, time]→TRIO formula].
Axioms are de+ned to transform elements of type TRIO formula to other elements
of type TRIO formula. Eventually, there must be a valuation from TRIO formulas to
real-world values (i.e. booleans, integers, etc.) so that the decision procedures of PVS
can be invoked. Hence, a valuation function is de+ned that takes a TRIO formula and
produces the corresponding boolean value assuming an initial context of the current
time instant.

The duration calculus (DC) is another real-time language that has been encoded into
PVS [28]. DC is an implicit-time interval temporal logic in which the current inter-
val is not explicitly known. Rather than using uninterpreted types to de+ne formulas,
however, the DC encoding takes advantage of the higher-order capabilities of PVS and
de+nes formulas as functions of type [Interval→ bool]. DC operators are de+ned as
Curried functions, which when given their original operands, return a function from
an Interval to the original range of the operator. For example, the disjunction operator
“
∨

” is de+ned as “
∨

(A; B)(i): bool =A(i) OR B(i)”, where A and B are of the type
[Interval→ bool] and i is of type Interval. Using this technique, the resulting functions
can be combined normally, while still delaying the evaluation of the whole expression
until a temporal context is given. Eventually, when a speci+c interval is given, an
actual boolean value is obtained.

For ASTRAL, the DC approach was chosen for several reasons. Since TRIO is an
implicit-time temporal logic, one of the main motivations of the TRIO encoding was
to keep the actual current time hidden. In ASTRAL, the current time can be explicitly
referenced using the variable now, thus it was unnecessary to keep the time hidden.
Another disadvantage of the TRIO encoding is that all of the axioms of +rst-order
logic needed to be explicitly encoded into PVS to manipulate the TRIO formula type.
Using the DC encoding style, however, the built-in PVS framework could be utilized,
which includes all +rst-order logic axioms.

All ASTRAL operators have been de+ned as Curried functions from their operand
domains to the type [time→ range]. For example, the ASTRAL operator Start(trans1,
t1) takes a transition trans1 and a time t1 and returns true iD the last start of trans1 was
at t1. Its PVS counterpart, Start1(trans1, at1) takes a transition trans1 and an operand
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at1 of type [time→ time] and returns a function of type [time→ bool] such that when
an evaluation time t1 is given will return true iD the last start of trans1 at time t1
was at time at1(t1). In the Start1 de+nition, shown below, as well as the de+nitions
of all ASTRAL operators that take a time operand, the time operand is itself of type
[time→ time] and is only evaluated after an evaluation context is provided.

Start1(trans1: transition, at1: [time→ time]) (t1: {t1: time | at1(t1)6 t1}}): bool =
Fired(trans1, at1(t1)) AND
(FORALL (t2: time):

at1(t1) < t2 AND t26 t1 IMPLIES
NOT Fired(trans1, t2))

With the operators de+ned in this manner, it is possible to combine ASTRAL operators
in standard ways and yet still produce an expression that will only be evaluated once
its temporal context is given. The explicit operator de+nitions also allow all expressions
translated from ASTRAL to PVS to be easily expanded and reduced via the built-in
mechanisms of PVS. The resulting encoding is very close to the ASTRAL base logic
with only slight syntactic diDerences and allows a speci+er who is familiar with the
ASTRAL language to easily read the PVS expressions of ASTRAL formulas.

4.2. Partial functions

Some speci+cation languages such as Z [29] allow the de+nition of partial functions
(i.e. functions that are only well de+ned at certain points) within speci+cations. Unlike
some other theorem provers, PVS does not support the use of partial functions directly.
To encode languages that allow the de+nition of partial functions or whose operators
themselves may be partial functions into PVS, alternative approaches must be used.
In lieu of partial functions, PVS has a very powerful predicate subtyping system that
allows functions to be declared with domains of only those elements satisfying a given
predicate, such as only those elements for which a function is well de+ned. The user
then proves TCC obligations that the operand of each function satis+es the given
predicate. For a speci+c class of functions, such as boolean functions, an alternative
to predicate subtyping is to de+ne a new domain that contains an additional unde+ned
element and then modify the operators for that class of functions to use the new
domain. For example, for boolean partial functions, a three-valued domain of {true,
false, unde+ned} can be de+ned in PVS with boolean operators modi+ed to work with
the new domain.

The partial functions in ASTRAL are the operators that take a time as an argument.
In ASTRAL, only times in the past may be referenced, thus any formula that references
a time beyond the value of now is unde+ned. In encoding these operators into PVS,
the choice was made to use the subtyping mechanism of PVS for similar reasons as the
choice to use the DC encoding style. Namely, it was preferable to rely on the existing
PVS framework as much as possible. There were also a number of disadvantages to
explicitly adding an unde+ned value and then modifying the appropriate operators.
For instance, many additional axioms needed to be added to derive and manipulate
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expressions containing the unde+ned element. The main drawback, however, is that the
ASTRAL past operator is a polymorphic function. That is, the past operator can have
multiple types depending on the type of A. Since past takes a time, it is unde+ned
when t is greater than now. Since A can be of any type, essentially every type in
the speci+cation and hence every operator in the language would need to be rede+ned
using an unde+ned element. This was highly undesirable and would have unnecessarily
complicated both the encoding and the resulting proofs.

Instead, by using the PVS subtyping mechanism, the user must prove TCCs showing
that the time operand of any timed operator used in a speci+cation is less than or equal
to the temporal context given to the operator. Most of these obligations will be trivial
given that the time operands are usually based on now directly or on a quanti+ed time
variable that was appropriately limited.

The de+nition of the Start1 operator in the previous section demonstrates the use
of the subtyping mechanism. The time operand of the Start1 function, at1, is of type
[time→ time] and is only evaluated after an evaluation context is provided. Since it is
not known whether at1(t1) will be a valid operand or not (i.e. will cause the expression
to be unde+ned), t1 is limited by the PVS typing system to be greater than or equal
to at1(t1). It is then the user’s job to show via a TCC obligation that any evaluation
times of a Start1 expression occurring in a speci+cation are permissible. The other
timed operators of ASTRAL are de+ned in a similar manner.

4.3. Noninterleaved concurrency

Concurrency in real-time systems can be represented by either an interleaved or a
noninterleaved model. In an interleaved model, concurrent events occur sequentially
between changes to time, while in a noninterleaved model, concurrent events occur
simultaneously without an implied ordering. Timed state-machine languages that use
an interleaved model of concurrency use an explicit “ tick” transition to change time.
The combination of the implied ordering of interleaved concurrency and the use of
a tick transition allows the semantics of interleaved timed state-machine languages
to be simpli+ed signi+cantly over their noninterleaved counterparts because a system
execution can be represented as a sequence of transitions rather than an interval of time
in which one or more events occur or do not occur at each time. The proof obligations
for such languages are also correspondingly simpli+ed since they can be inductive on
the nth transition to +re rather than a full induction on a possibly dense time domain.

In ASTRAL, the proof obligations are carried out modularly by proving the prop-
erties of each process individually and then proving global properties based on the
collection of process properties. Fig. 2 shows the dependencies of the proof obliga-
tions in the elevator control system. In this +gure, the requirements of the Eleva-
tor Button Panel (EBP) are proved using its actual executions as well as the behavior
it assumes about the external environment in its environment clause. The requirements
of the Floor Button Panel (FBP) are proved similarly. The requirements of the Eleva-
tor process are proved using its actual executions, but do not require any assumptions



64 P.Z. Kolano / Theoretical Computer Science 282 (2002) 53–99

Fig. 2. Proof dependencies of elevator control system.

about the external environment. Instead, they require assumptions about the behavior
of the Elevator Button Panel and Floor Button Panel types as stated in the Elevator’s
imported variable clause. Note that the Elevator does not depend on the actual ex-
ecutions of the other two process types, but only depends on the behavior that is
assumed about these processes. The global requirements do not depend on any actual
executions and are dependent solely on the local requirements of each process (and
the global environment, when present).

Although the proof obligations of a process are proved using assumptions about other
processes rather than the actual executions of those processes, these assumptions in
essence de+ne subsets of actual executions by restricting imported variable values and
the times at which imported transition may start and end. Thus, although each process’s
execution is a sequential series of transitions (with varying delays in between) by the
fact that transitions are nonoverlapping on each process instance, the events in other
processes represented by the “assumption executions” overlap with each other and with
events in the local process, thereby requiring a noninterleaved model.

4.3.1. ASTRAL axiomatization
The axiomatization of ASTRAL into PVS is a much revised and expanded version

of the ASTRAL axiomatization of [8] and includes corrections for both soundness and
completeness. The full version of the semantics presented in this paper de+nes the
current formal semantics of the ASTRAL language. The ASTRAL axiomatization is
de+ned by three types of axioms. The abstract machine axioms describe the execution
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trans fire: AXIOM

(FORALL (t1: time):

(EXISTS (trans1: transition):

Enabled(trans1, t1)) AND

(FORALL (trans2: transition, t2: time):

t1 - Duration(trans2)¡t2 AND t2¡t1 IMPLIES

NOT Fired(trans2, t2)) IMPLIES

(EXISTS (trans1: transition): Fired(trans1, t1)))

trans entry: AXIOM

(FORALL (trans1: transition, t1: time):

Fired(trans1, t1) IMPLIES

Entry(trans1, t1))

trans exit: AXIOM

(FORALL (trans1: transition, t1: time):

t1¿Duration(trans1) AND

Fired(trans1, t1 - Duration(trans1)) IMPLIES

Exit(trans1, t1))

trans called: AXIOM

(FORALL (trans1: transition, t1: time):

Fired(trans1, t1) AND

Exported(trans1) IMPLIES

Issued Call(trans1, t1))

trans mutex: AXIOM

(FORALL (trans1: transition, t1: time):

Fired(trans1, t1) IMPLIES

(FORALL (trans2: transition):

trans2 �= trans1 IMPLIES

NOT Fired(trans2, t1)) AND

(FORALL (trans2: transition, t2: time):

t1¡t2 AND

t2¡t1 + Duration(trans1) IMPLIES

NOT Fired(trans2, t2)))

vars no change: AXIOM

(FORALL (t1: time, t3: time):

t16t3 AND

(FORALL (trans2: transition, t2: time):

t1¡t2 + Duration(trans2) AND

t2 + Duration(trans2)6t3 IMPLIES

NOT Fired(trans2, t2)) IMPLIES

(FORALL (t2: time):

t16t2 AND t26t3 IMPLIES

Vars No Change(t1, t2)))

initial state: AXIOM

Initial(0)

Fig. 3. ASTRAL abstract machine axioms.

of a single process. The imported transition axioms describe information that can be
derived about the execution of other processes. Finally, the speci+cation-dependent
axioms, which will not be discussed, are axioms that can only be constructed after a
speci+cation is given.

4.3.1.1. Abstract machine axioms
The seven ASTRAL abstract machine axioms are shown in Fig. 3. The axioms are

based on the predicates Called and Fired. Called(trans1; t1) is true iD transition trans1
was called from the external environment at time t1. Fired(trans1, t1) is true iD trans1
+red at t1. Since a diDerent transition may be executing on each process instance, each
process instance has a separate Fired and Called predicate. In ASTRAL, a given process
instance “knows” its own execution history completely, but only knows the portion of
the execution history of other process instances that pertains to the exported transitions
of those instances. In the semantics, for a given process instance, the Fired and Called
predicates of the process can be used to derive information about the state variables
of the process and vice versa. The predicates of other process instances, however, can
only be used to derive a limited amount of information as will be discussed in the
next section.

The trans 1re axiom is the only way to directly derive that a transition +red. It
states that if some transition is enabled and the process is idle (i.e. no other transition
is in the middle of execution), then some transition will +re. Note that Enabled requires
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that the transition’s entry assertion holds and that if the transition is exported, then it
has been called.

The trans +re axiom by itself is not suFcient to describe what occurs when a transi-
tion +res. A number of other axioms make assertions that further describe the behavior
of a process. The trans entry axiom states that whenever a transition +res, its entry
assertion held at that time.

The trans exit axiom states that whenever a transition +res, its exit assertion holds
at a time duration later. Note that in this case, the user must guarantee that the exit
assertion will not evaluate to false for the axiom to be sound. In the case of trans entry,
this requirement is not necessary because it is not possible to derive Fired(trans1, t1) if
Entry(trans1, t1) does not hold. In the trans exit case, however, it is possible to derive
Fired(trans1, t1), regardless of the value of Exit(trans1, t1 + Duration(trans1)).

The trans called axiom states that whenever an exported transition +res, it must have
been called since the last time the transition +red.

The trans mutex axiom states that whenever a transition +res, no other transition
can +re until duration later (i.e. until the transition ends). This axiom combined with
trans +re is suFcient to show that a single unique transition +res when some transition
is enabled and the process is idle. Note that since the semantics cannot be represented
by a sequence of transitions as in an interleaved model, it is necessary to assure that
a process is actually idle in order for a transition to +re.

These six axioms describe the dynamic execution of transitions. Besides the start,
end, and call times of transitions, the other time-dependent entities are variables. The
axioms so far only describe variables implicitly in the Entry, Exit, and Enabled func-
tions used in them. Thus, the value of a variable is only known at the time a transition
starts and when it ends. In ASTRAL, however, it is also known that a variable only
changes value when a transition ends. Thus, the vars no change axiom states this fact.
Speci+cally, it states that for any interval in which a transition has not ended, all
variables keep a single value throughout the interval. The Vars No Change function is
process-dependent and is constructed by the translator based on the variables declared
in each process. Vars No Change(t1, t2) states that the value of all variables of the
process have the same value at t1 as they do at t2.

Finally, the initial state axiom states that the initial condition holds at time zero. As
was the case in trans exit with Exit, Initial is required to be true at time zero, or else
the soundness of the axiom cannot be guaranteed.

4.3.1.2. Imported transition axioms
In addition to the abstract machine axioms, there are three axioms dealing with

imported transitions, which are shown in Fig. 4. Most of the information that can be
derived about local variables and transitions cannot be derived about imported variables
and transitions. For example, it is not known when imported variables will change,
nor what the duration of an imported transition is, nor what held when an imported
transition started or ended, etc. If any of these items are required to hold to prove a
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i trans mutex: AXIOM

(FORALL (id1: id, itr1: i transition, t1: time, t3: time):

t1¡t3 AND

i Started(id1, itr1, t1) AND

(FORALL (t2: time):

t1¡t2 AND t26t3 IMPLIES

NOT i Ended(id1, itr1, t2)) IMPLIES

(FORALL (itr2: i transition, t2: time):

t1¡t2 AND t26t3 IMPLIES

NOT i Started(id1, itr2, t2) AND

NOT i Ended(id1, itr2, t2)))

i trans end: AXIOM

(FORALL (id1: id, itr1: i transition, t3: time):

i Ended(id1, itr1, t3) IMPLIES

(FORALL (itr2: i transition):

itr2 �= itr1 IMPLIES

NOT i Ended(id1, itr2, t3)) AND

(EXISTS (t1: time):

t1¡t3 AND

i Started(id1, itr1, t1) AND

(FORALL (t2: time):

t1¡t2 AND t2¡t3 IMPLIES

NOT i Ended(id1, itr1, t2))))

i trans start: AXIOM

(FORALL (id1: id, itr1: i transition, t3: time):

i Started(id1, itr1, t3) IMPLIES

(FORALL (itr2: i transition):

itr2 �= itr1 IMPLIES

NOT i Started(id1, itr2, t3)) AND

(EXISTS (t1: time):

t16t3 AND

i Called(id1, itr1, t1) AND

(FORALL (t2: time):

t16t2 AND t2¡t3 IMPLIES

NOT i Started(id1, itr1, t2))))

Fig. 4. ASTRAL imported transition axioms.

requirement, they must be explicitly stated in an imported variable clause. There are,
however, a few things that can be deduced about all imported transitions, regardless
of context.

The imported axioms are expressed in terms of i Called, i Started, and i Ended,
which are shown below. These functions correspond to the local de+nitions of Called
and Fired, but refer to information about transitions imported from other processes.
These predicates represent the assumed executions discussed above. Namely, they are
de+ned by the imported variable clause of the process being reasoned about. The id
parameter de+nes the process instance for which the predicates are de+ned. The exact
duration between a start and an end of an imported transition is not known globally or
in other processes because the duration is implementation dependent. Thus, i Started
and i Ended had to be de+ned separately, rather than the single Fired of local process
de+nitions.

i Started: [[id, i transition, time] → bool]
i Ended: [[id, i transition, time] → bool]
i Called: [[id, i transition, time] → bool]

Based on these de+nitions, three axioms can be de+ned that hold for all transitions
in imported processes regardless of the imported variable clause of the process being
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reasoned about. The i trans mutex axiom states that for any process id and in any
interval such that an imported transition started at the beginning of the interval and
has not yet ended, no imported transition can have started or ended on the process
associated with that process id within the interval (excluding the +rst instant).

The i trans end axiom states that for any process id, if an imported transition has
ended on that process, no other imported transition ended on the same process at the
same time and there was a start that has occurred since the last time the transition
ended.

The i trans start axiom is similar to i trans end, except that it states that if an
imported transition starts, then no other imported transition started on the same process
at the same time and that the transition has been called but not yet serviced.

4.3.3. Proof obligations
Since ASTRAL is based on noninterleaved concurrency, the intra-level proof obliga-

tions [8] (i.e. the proof obligations necessary to show that the invariant and schedule of
a level hold) are inductive on ASTRAL’s time domain. Since the time domain of AS-
TRAL is the nonnegative real numbers, however, and simple induction on that domain
is not valid, the induction must be performed on nonempty intervals of the nonnegative
reals. That is, the induction hypothesis is assumed up to some arbitrary time T0 and
the user must show that it holds for a constant length of time �¿0 afterwards. Note
that � is an arbitrary constant and can take any value as long as it is positive. The
induction case of the invariant proof obligation is shown below.

invariant induct: THEOREM
(FORALL (T1: time): T16T0 IMPLIES Invariant(T1)) IMPLIES
(FORALL (T1: time): T0¡T1 AND T1¡T0 + � IMPLIES Invariant(T1))

For the induction to be reasonable, � must be bounded because the bigger � be-
comes, the more diFcult it is to prove that the property holds at the times close to
the upper bound T0 + �. This is because at those times, more and more time has
elapsed since the last known state of the system (i.e. when the inductive hypothesis
held). In translating the proof obligations into PVS, it was not possible to say that
� is “as small as possible”. Instead, an explicit upper bound needed to be chosen to
restrict �. The upper bound chosen for the ASTRAL encoding was a value less than
the smallest transition duration. That is, the conjunct “(FORALL (trans1: transition):
� ¡ Duration(trans1))” was added to the proof obligation above.

This bound is satisfactory for a number of reasons. The main justi+cation is that
with � bounded by the smallest duration, only a single transition can +re or complete
execution within the proof interval. This is advantageous because if only a single
transition can end, then the state variables can only change once within the interval.
Additionally, if a transition did end within the interval, then the inductive hypothesis
held when the transition began +ring. These qualities are useful for automating the
proofs of certain types of properties as will be shown in Section 6.1.
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4.4. Irregular operators

In some speci+cation languages, there are operators whose type signatures cannot be
described in a regular fashion. One example is the ASTRAL Start operator. For unpa-
rameterized transitions, the signature of the Start operator is regular and can be written
as “[transition, time] → boolean”. For parameterized transitions, however, the transition
operand can also be a transition name with a parameter list. For a transition trans1
with n parameters of arbitrary type (p1; : : : ; pn), all of the following are legal AS-
TRAL expressions: Start(trans1, t1), Start(trans1(p1), t1), Start(trans1(p1; p2); t1); : : : ;
Start (trans1(p1; : : : ; pn); t1). Since the parameters are of arbitrary and possibly diDer-
ing types, there is no type signature that can adequately describe the Start operator.

These “irregular” operators are diFcult to encode in an elegant fashion. To encode
the parameterized version of the Start operator, there seemed to be two possible alter-
natives. The +rst option was to de+ne an overloaded Start operator for each allowable
transition=parameter combination. For example, the trans1 transition above would have
n corresponding Start de+nitions for the n possible parameter combinations. Although
this would keep the PVS encoding similar to its ASTRAL counterpart, it would also
increase the size of translated speci+cations signi+cantly. In addition, it was undesirable
to de+ne the core ASTRAL operators in translated speci+cations rather than in a stan-
dard ASTRAL–PVS library. Instead, a second option was chosen, which was to de+ne
a single parameter type that contains +elds for every possible parameter combination.
This allowed a single Start de+nition to handle all of the parameter cases.

In general, a timed irregular operator can be “regularized” in four steps. First, a
general parameter type is created that covers all parameter combinations. Then, a history
of parameters is set up to record the parameters used at diDerent times in the system’s
execution. Next, a parameter evaluation function is de+ned to test the equality of
two parameter instances for a given operand (e.g. transition). Finally, the operator is
rede+ned appropriately.

4.4.1. De1ning a parameter type
The +rst step is to introduce a new “parameter type” using a record declaration,

which contains the parameter names and types of all transitions in the process. For
example, the de+nition of parameter in the Elevator Button Panel process is shown
below.

parameter: TYPE = [# p floor 1: floor #]

The idea of this scheme is that all entry=exit assertions and transition operator def-
initions can reference the same type (i.e. parameter) and use only those parts of a
parameter instance appropriate in the given situation. The parts of a parameter that
are not used in an expression for all intents and purposes do not exist for that ex-
pression. For example, an entry assertion may reference parameters that are passed to
it when called from the external environment. The entry assertion only references its
own declarations within the parameter type, thus only constrains those portions of the
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parameter. The unreferenced elements of the parameter type can have any value, thus
they do not aDect the reasoning.

4.4.2. De1ning a parameter history
After the parameter type is created, it is necessary to set up a history of parameters

to record the parameter instances that are used at each time in the system’s execu-
tion. In ASTRAL, any transition may have parameters that are used in the entry and
exit assertions to describe the conditions of enablement and the eDects of execution,
respectively. For an exported transition, the parameters are provided by the external
environment when the transition is called. These transitions are enabled if there is a set
of such parameters that has not yet been serviced by a previous execution of the transi-
tion and for which the entry assertion is satis+ed. Transitions that are not exported are
enabled if there is any set of parameters of the appropriate types that satisfy the entry
assertion. When a parameterized transition +res, one set of the possible sets of param-
eters is chosen nondeterministically. In the semantics, the functions Call Parms and
Fire Parms, shown below, are de+ned to record the history of transition parameters.

Call Parms: [[ptrans1: {trans1: transition | Exported(trans1) AND
Has Parms(trans1)}, {t1: time | Called(ptrans1, t1)}] → set[parameter]]

Fire Parms: [[ptrans1: {trans1: transition | Has Parms(trans1)},
{t1: time | Fired(ptrans1, t1)}] → parameter]

Call Parms is only valid at times when an exported transition has been called and holds
the parameters supplied by the external environment. Fire Parms is only valid at times
when a parameterized transition has +red and holds the instance of the parameters for
which the transition +red. An additional requirement between Call Parms and Fire
Parms is that if an exported parameterized transition trans1 +res at t1, the parameters
for which trans1 +red must come from the set of trans1 call parameters that have not
yet been serviced at t1. The call 1re parms axiom describes this relationship between
Call Parms and Fire Parms.

call fire parms: AXIOM
(FORALL (trans1: transition, t3: time):

Exported(trans1) AND
Has Parms(trans1) AND
Fired(trans1, t3) IMPLIES

(EXISTS (t1: time):
t16t3 AND
Called(trans1, t1) AND
member(Fire Parms(trans1, t3), Call Parms(trans1, t1)) AND
(FORALL (t2: time):

t16t2 AND t2¡t3 AND
Fired(trans1, t2) IMPLIES
Fire Parms(trans1, t2) �= Fire Parms(trans1, t3))))
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4.4.3. De1ning a parameter evaluation function
Start(trans1(p1; : : : ; pi), t1) is true iD the last time trans1 +red with its +rst i param-

eters equal to p1; : : : ; pi was at time t1. The last component necessary to regularize the
de+nition of the Start operator is a function to determine the equality of the +rst i pa-
rameters of a given transition in two instances of the parameter type. For each process
speci+cation, an Eval Parms function is constructed with the required functionality.
The Eval Parms function of the Elevator Button Panel process is shown below. Eval
Parms is de+ned recursively on the number of parameters to check. Depending on the
transition given, a diDerent set of components of the parameter record is checked. In the
de+nition below, the “p Aoor 1” component is checked in the request Aoor transition.

Eval Parms(PTRANS1: {TRANS1: transition | Has Parms(TRANS1)},
N1: nat, P1: parameter, P2: parameter): RECURSIVE bool =

(IF N1 = 0 THEN TRUE
ELSE

CASES PTRANS1 OF
request floor:

IF N1 = 1 THEN p floor 1(P1) = p floor 1(P2)
ELSE FALSE
ENDIF

ELSE FALSE
ENDCASES AND
Eval Parms(PTRANS1, N1 - 1, P1, P2)

ENDIF)
MEASURE (LAMBDA (TRANS1: transition, N1: nat,

P1: parameter, P2: parameter): N1)

4.4.4. De1ning the irregular operator
With the above de+nitions, it is possible to provide a regular de+nition of the

Start operator. The Start1 de+nition shown below is similar to the Start1 de+nition in
Section 4.1 except that it takes a natural number n1 and a Curried parameter ap1. This
de+nition requires that ptrans1 has +red and that the +rst n1 parameters of ptrans1
in ap1(t1) match the +rst n1 parameters of the actual +re parameters at that time. In
addition, any time after the given time (at1(t1)) at which an exception associated with
ptrans1 +red, the +rst n1 parameters must not match.

Start1(ptrans1: {trans1: transition | Has Parms(trans1)}, n1: nat,
ap1: [time → parameter], at1: [time → time])(t1: {t1: time | at1(t1)6 t1}): bool =

Fired(ptrans1, at1(t1)) AND
Eval Parms(ptrans1, n1, ap1(t1), Fire Parms(ptrans1, at1(t1))) AND
(FORALL (t2: time):

at1(t1)¡t2 AND t26t1 AND
Fired(ptrans1, t2) IMPLIES
NOT Eval Parms(ptrans1, n1, ap1(t1), Fire Parms(ptrans1, t2)))
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5. PVS library and translator

The axiomatization and operator de+nitions discussed in Section 4 have been incorpo-
rated into an ASTRAL–PVS library. The library contains the speci+cation-
independent core of the ASTRAL language. In the axiomatization and operators, some
of the theories are parameterized by type and function constants. For example, to de-
+ne the trans +re axiom, the type “transition” and the function “Duration” need to be
supplied to the axiomatization. In order to use the axiomatization, the appropriate types
and functions must be de+ned based on the speci+cation to be veri+ed. An ASTRAL
to PVS translator has been developed to automatically construct all the appropriate
de+nitions.

The major obstacle in translating ASTRAL speci+cations is translating identi+ers
with types involving lists and structures. In ASTRAL, it is possible to de+ne arbitrary
combinations of structures and lists as types, thus references to variables of these types
can become quite complex. For example, consider the following type declarations:
“list1: list of integer” and “struct1: structure of (l one(integer): list1)”. If s1 is a
variable of type struct1, valid uses of s1 would include s1 by itself, s1[l one(5)], and
s1[l one(5)][9]. The translation of expressions such as these must result in a Curried
time function, so that it can be used with the de+nitions of the Curried boolean and
arithmetic operators. The expression in each bracket can be time-dependent, so it is
necessary to de+ne the translation such that an evaluation context (i.e. time) given to
the expression as a whole is propagated to all expressions in brackets.

In the translation of this example, s1 is a function of type [time→ struct1] and
struct1 is a record [# l one: [integer→ list1] #]. The expression “s1[l one(5)][9]”,
becomes “(�(T1: time): nth(((�(T1: time): l one((s1)(T1)) ((const(5))(T1))))(T1),
(const(9))(T1)))”. The lambdas are added to propagate the temporal context given to
the formula as a whole. Although the lambda expression generated for s1 looks very
diFcult to decipher, translated expressions will never actually be used in this “raw”
form. In the proof obligations, a translated expression is always evaluated in some
context before being used. Once this evaluation occurs, all the lambdas drop out and
the expression is simpli+ed to a combination of variables and predicates. For example,
the expression above evaluated at time t becomes “nth(l one((s1)(t))(5), 9)”. First,
the value of the variable s1 is evaluated at time t. Then, the record member l one
is obtained from the resulting record. This member is parameterized, so it is given a
parameter of 5. Finally, element 9 of the resulting list is obtained.

For the full details of the axiomatization of the ASTRAL abstract machine, the
operator de+nitions, and the ASTRAL to PVS translator, see [21].

6. Proof assistance and automation

After a speci+cation is translated, the user must prove the inductive proof obliga-
tions discussed in Section 4.3. In general, the proof obligations are undecidable so
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they require a fair amount of interaction with the prover. For timed properties, this
interaction usually consists of setting up the sequences of transitions that are possible
within the prover, proving that each sequence is indeed possible, and then showing
that the time of the sequence is less than the required time. Given the amount of rea-
soning required, there is ample opportunity to fall prey to the theorem prover pitfalls
discussed in Section 1. Portions of these proofs can be automated with appropriate
PVS strategies, which minimizes the number of opportunities the user has to waste
and=or repeat work. For many untimed properties, the burden of theorem proving can
be completely removed from the user. After performing the proofs of several systems
using the encoding, PVS strategies were developed to assist the user in proving both
of these types of properties.

These strategies were applied to a set of testbed systems. The speci+cations that
comprised the testbed varied from the speci+cation of a distributed mutual exclusion
protocol to a phone switching system to a production facility. More speci+cally, the
speci+cations include a number of standard benchmark systems: a bakery speci+cation
that describes the distributed mutual exclusion algorithm of [25], a cruise control system
based on the description in [30], the elevator control system described in Section 2,
a production cell speci+cation based on the description in [17], a railroad crossing
system based on the description in [26], and a stoplight speci+cation adapted from the
stoplight control system described in [11]. The testbed also includes the speci+cation of
an electronic scoring system for Olympic boxing based on a description of the system
taken from the oFcial 1996 Olympic web site [27]. Finally, the testbed includes a long
distance telephony speci+cation taken from [7]. The complete ASTRAL speci+cations
of the testbed systems are available in [20].

As shown in Section 4.3, the ASTRAL proof obligations are inductive on the time
domain, thus all have a base case. In the base case, each property must be shown to
hold when the system is +rst initialized. The try-base-case strategy was developed to
discharge these obligations. The try-base-case strategy introduces the initial state axiom
and then invokes the PVS grind command, which is a heavy-duty decision procedure
that performs rewriting, skolemization, and automatic quanti+er instantiation. The try-
base-case strategy is suFcient in most cases to discharge the base case obligations
automatically since many simpli+cations are possible at time zero. Table 1 lists the
number of base case obligations in each testbed system and the number that were
automatically proved using the try-base-case strategy.

There are three main cases in which this strategy fails. The +rst case is when im-
ported variables are referenced in the property. In this case, it may be necessary to
introduce information about the initial state of the other properties with the speci+cation-
dependent i initial state axiom. Then, the quanti+ed formulas must be instantiated with
the correct process types. The second case is when an immediate response is required
such as “Call(trans1, now)→Start(trans1, now)”. In this case, it is necessary for the
user to prove that the required response will occur. This is almost always simpler in
the base case than in the inductive cases, since at time zero all processes are idle
and the state is completely known. Finally, try-base-case can fail when the base case
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Table 1
Results of try-base-case on testbed system properties

System Total base cases Proved base cases

Bakery algorithm 2 2
Cruise control 2 2
Elevator 5 4
Olympic boxing 4 3
Phone 4 3
Production cell 9 8
Railroad crossing 3 1
Stoplight 1 0
Total 30 23

obligation contains complex de+nitions or quanti+cations that cannot be resolved by
grind.

6.1. Untimed formulas

Properties of real-time systems do not consist solely of timing requirements. In fact,
as shown in [23], more than half of the total number of properties in the testbed
systems are of an untimed variety. Given this fact, it is crucial to provide assistance
for both untimed as well as timed properties.

6.1.1. The try-untimed strategy
The try-untimed strategy was written to attempt the proofs of properties that do not

involve time and only deal with combinations of state variables of a single process
instance. For example, in the Elevator process type, one such property in the invariant
section is “elevator moving→∼door moving”. That is, whenever the elevator car is
moving, the elevator door should not be in the process of opening or closing. This
property was proved completely unassisted by the try-untimed strategy.

The basis of the try-untimed strategy is that in the interval T0 to T0+� of the proof
obligations, the state variables either stay the same or one or more of them change. If
the variables stay the same, then by the inductive hypothesis, the property holds at all
times in the interval. If a variable changes during the interval, then by the semantics of
ASTRAL, a transition ended at the time of the change. Furthermore, since transitions
are nonoverlapping and, as discussed, � has been limited to a constant less than the
duration of any transition, only a single transition end can occur within the interval.
Fig. 5 depicts this situation. Let T1 be the time of such an end. Since no transition
ended in the interval [T0, T1), the state variables must have stayed the same during
that time period, thus the property holds by the inductive hypothesis. Similarly, since
no transition ended in the interval (T1, T0 + �], the variables are unchanged in that
region, thus the property holds in that region if it holds at T1. The bulk of the strategy
is thus devoted to proving that the property holds at T1.
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Fig. 5. Proof interval.

To prove this, it must be shown that all transition exit assertions preserve the prop-
erty, thus the proof is split into a case for each transition and the transition’s entry and
exit clauses are asserted. Once again, since � was limited to less than the duration of
any transition, the start of the transition occurred before T0; thus the property held at
the start of the transition. From this point, a modi+ed version of grind is invoked to
+nish the proof. The modi+ed version, called my-grind, is shown below.

(defstep my-grind (&optional (if-match NIL))
(then@

(astral-expand-clause)
(repeat (try (skosimp∗) (assert) (skip)))
(delete-bad)
(grind :exclude("Start1" "Startn" "End1" "Endn" "Call1" "Calln"

"Change1" "Changen" "Issued Call" "UQ" "Mod" "Div")
:if-match if-match)))

The my-grind strategy is essentially grind with two optimizations. The main opti-
mization consists of deleting expressions in the sequent that cannot be used eDectively
by PVS such as the timed operators. The supplementary strategy delete-bad uses string
searches to +nd and delete formulas in the sequent that contain these “bad” expres-
sions. When these de+nitions are expanded, grind attempts to automatically instantiate
quanti+ers in the expansion, which increases running time. Since grind cannot usually
instantiate correctly in these situations, excluding the de+nitions saves signi+cant time.
My-grind works by +rst using another supplementary strategy, astral-expand-clause, to
expand the ASTRAL de+nitions up to the clause level so that delete-bad will not miss
expressions that are hidden in de+nitions. It then repeatedly tries the PVS commands
skosimp∗ (i.e. repeated skolemization and disjunctive simpli+cation) and assert (i.e. a
fast decision procedure that is the core of PVS) until no more simpli+cations can be
made. This is done so that delete-bad will not delete terms that are separable from
the “bad” terms. This results in a second optimization because in some cases, one of
the repeated asserts will complete the proof without grind ever being invoked, which
means the proof can be discharged very quickly. If assert does not complete the proof,
delete-bad is executed followed by grind. Most of the operators that are removed by
delete-bad are also excluded from rewriting by appropriate grind arguments. This is
done so that de+nitions that are not expanded by astral-expand-clause, but that contain
these operators, are not expanded by grind. Note that using grind’s exclude option
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Table 2
Results of try-untimed on testbed system properties

System Applicable properties Proved properties

Bakery algorithm 5 3
Cruise control 5 5
Elevator 2 2
Olympic boxing 1 1
Phone 17 10
Production cell 14 8
Railroad crossing 0 0
Stoplight 11 0
Total 55 29

without the expansion, simpli+cation, and deletion of my-grind will not achieve the
same performance gain because grind will still attempt to instantiate quanti+ers that
contain bad expressions, it will still split the proof when a bad expression is con-
joined with another, and it will still attempt to use the unmodi+ed bad expressions as
instantiations for other quanti+ed expressions.

6.1.2. Try-untimed results
Table 2 shows the results of using the try-untimed strategy to attempt the proofs of

applicable invariant and schedule properties in the testbed systems. In this case, “ap-
plicable” means that the property is untimed and only references local state variables.
The table shows that over half of the properties that are applicable were automatically
discharged by the try-untimed strategy.

A side bene+t of the try-untimed strategy is that even when it fails, it is still ad-
vantageous for the user to run because usually only very diFcult cases will be left
for the user to prove. When the strategy fails, it is due to one of three reasons. The
+rst reason is that the user invoked the strategy on a timed property or one that in-
volves imported variables. In this case, it is likely that most of the cases will fail,
since try-untimed was not intended to deal with these types of properties. The second
reason is that one or more transitions do not preserve the property. In this case, the
user knows the exact transitions that failed since PVS will require further interaction
to complete those cases. The user can correct the speci+cation before continuing with
other proofs. The last reason, which will be the most likely, is that it failed because
there was not enough information in the entry assertion of a transition to prove the
property. Usually, this occurs when the value of a variable in the formula to be proved
is not explicitly stated in the entry assertion of the transition, but instead is implied by
the sequences preceding that particular transition. For example, consider the elevator
property “elevator moving→∼ door open”. That is, the door must be closed while the
elevator car is moving. After running the try-untimed strategy, all the transition cases
are proved except for the “door stop” case. The door stop transition, shown below,
stops the door in either the open or closed position after a suitable length of time from
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Fig. 6. An indeterminate backward step.

when the door started moving.

TRANSITION door stop
ENTRY [TIME: door stop dur]

door moving
& now - t move door¿ Change(door moving)

EXIT
∼door moving

& door open=∼ door open′

The strategy fails for this case because it is possible for door open to be set to true
in the exit assertion and yet the value of elevator moving is not stated in the entry
assertion so can possibly be true if door stop follows a transition in which elevator
moving is true. If elevator moving is true and door open is false when door stop begins
+ring, then the formula will hold at the start of execution yet will not hold at the end
of execution. In order to complete the proof of this property, it is necessary to consider
the transitions that can +re immediately before door stop. If the proof still cannot be
completed, transitions must be considered further and further back in time. Eventually,
the formula will be provable or a violation will occur.

6.1.3. The step-bw-indeterminate strategy
To assist the user in making such backward steps in untimed proofs, the step-bw-

indeterminate strategy was developed. This strategy takes a time t from and performs
the necessary proof steps to derive the transitions that could have ended prior to this
time as shown in Fig. 6. It is +rst shown that there is a transition that ended before
t from. The strategy attempts to discharge this subgoal by achieving a contradiction
between the initial state and the state at t from. This is possible because if no transition
ends before t from, then the variables could not have changed value since the initial
state. The strategy then invokes my-grind, which in most cases will be suFcient to
+nish the proof. In the cases that it is not suFcient, the user must complete the proof
by expanding timed operators or introducing relevant assumptions that require some
transition to end between the initial state and t from.

Since there is a transition that ended before t from, there is a transition that ends last
by an appropriate ASTRAL lemma. After it has been determined that some
transition has ended last, the strategy then attempts to eliminate as many of the possible
predecessors as possible by achieving a contradiction between the entry=exit of those
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transitions and the state at t from. This step is performed in a similar manner to prov-
ing the sequence generator obligations in the next section and fails for similar reasons.
In this case, however, more information, such as the inductive invariant=schedule, is
available to PVS, which makes this step more likely to succeed. When it fails, how-
ever, the user must prove the contradictions manually by expanding timed operators
and=or stepping backward appropriately.

6.2. Transition sequence generator

Since sequencing is so important to proving some properties, it is useful to provide
the user with a tool to view the transition sequences that can occur in a given process
type. Such a tool can be used to estimate time delays between states, help the user
visualize the operation of the system, assist in developing a plan of attack for a spe-
ci+c proof, and in some cases can be used to prove simple system properties. Unlike
graphical state-machine languages in which the successor information is part of the
speci+cation, in textual languages such as ASTRAL, sequencing cannot be determined
without more in-depth analysis. In addition, determining whether one transition is the
successor of another in ASTRAL is undecidable since transition entry=exit assertions
may be arbitrary +rst-order logic expressions. Many successors, however, can be elim-
inated based only on the simpler portions of the entry=exit assertions, such as boolean
and enumerated variables. Based on this fact, a transition sequence generator tool has
been developed.

6.2.1. Sequence generator proof obligations
The sequence generator +rst eliminates as many transition successors as possible.

This is done by attempting the proof of an obligation trans1 not trans2 for each pair
of transitions (trans1, trans2) as shown below. Note that this obligation only states
that some transition must end between trans1 and trans2 and does not exclude trans1
or trans2 from +ring. The obligation is suFcient, however, to prove that a transition
besides trans1 and trans2 must +re in between any +ring of trans1 and trans2. If
only trans1 and trans2 +re in between t1 and t2, then since t2 − t1 is +nite and the
durations of trans1 and trans2 are constant and nonnull, eventually a contradiction can
be achieved by applying the theorem below repeatedly on an ever shortening interval.
An obligation initial not trans1, as shown below, is also attempted to prove that each
transition is not the +rst to +re after the initial state.

trans1 not trans2: THEOREM initial not trans1: THEOREM

(FORALL (t1, t2: time): (FORALL (t1: time):

t1 + Duration(trans1)6 t2 AND Fired(trans1, t1) IMPLIES

Fired(trans1, t1) AND (EXISTS (trans2: transition, t2: time):

Fired(trans2, t2) IMPLIES t2+Duration(trans2)6 t1 AND

(EXISTS (trans3: transition, t3: time): Fired(trans2, t2)))

t1+Duration(trans1) <

t3+Duration(trans3) AND

t3+Duration(trans3)6 t2 AND

Fired(trans3, t3))))
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Table 3
Transition successors of testbed systems

System Process type Maximum Actual Computed
successors successors successors

Bakery algorithm Proc 42 8 25
Cruise control Accelerometer 2 2 2

Speed Control 132 76 94
Speedometer 2 2 2
Tire Sensor 2 2 2

Elevator Elevator 42 13 24
Elevator Button Panel 6 4 4
Floor Button Panel 20 14 14

Olympic boxing Judge 2 2 2
Tabulate 12 4 6
Timer 6 3 3

Phone Central Control 420 235 312
Phone 110 50 69

Production cell P Crane 156 13 36
P Deposit 6 3 3
P Deposit Sensor 6 3 3
P Feed 20 14 14
P Feed Sensor 6 3 3
P Press 42 7 7
P Robot 420 21 129
P Table 72 9 21

Railroad crossing Gate 20 7 7
Sensor 6 3 3

Stoplight Controller 506 92 198
Sensor 6 3 3

Total 2064 593 986

6.2.2. Sequence generator strategies
The PVS strategies try-seq-gen and try-seq-gen-0 were written to automatically dis-

charge these obligations. The try-seq-gen strategy uses abstract machine axioms to
introduce the entry and exit assertions of trans1, the entry assertion of trans2, and
the fact that if nothing ended between the end of trans1 and the start of trans2, then
all variable values remained constant during this time. Once all of this information is
present, the strategy invokes my-grind. The try-seq-gen-0 strategy is similar but uses
the initial clause of the process in place of the information about trans1.

6.2.3. Sequence generator results
Table 3 shows the results of using these strategies to compute the successors for

each process type of the set of testbed systems. For each process type, the table
shows the maximum number of successors, the number of successors that are prov-
ably possible, and the number that were computed automatically using the try-seq-gen
strategies.

There are two main factors that contribute to the diDerence between the number
of successors that are provably possible and the number computed by the try-seq-gen
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strategies in the testbed systems. The +rst factor is that entry assertions do not usually
constrain all of the state variables of a process. For example, the entry assertion of the
door stop transition, shown in Section 6.1, constrains the value of door moving, but
does not constrain the value of elevator moving.

When proving that the arrive transition, shown below, cannot follow door stop, PVS
does not have information about the value of elevator moving at the start of door stop,
which is only derivable from the transitions preceding door stop. Thus, PVS must
assume an arbitrary symbolic value for elevator moving. It is possible that elevator
moving is true, thus PVS cannot eliminate the possibility that arrive immediately fol-
lows door stop. It is provable that this is not the case, however, because it is not
possible to +nd a sequence of transitions starting from the initial state in which ar-
rive can immediately follow door stop. The only possible predecessors to door stop are
open door and close door. Open door sets elevator moving to false in its exit asser-
tion, thus if open door immediately precedes door stop, arrive cannot follow door stop.
Similarly, it is possible to show that close door must be preceded by door stop, which
is preceded by open door. Thus, arrive cannot follow door stop.

TRANSITION arrive
ENTRY [TIME: arrive dur]

elevator moving
& FORALL t: time

( t6 now
& ( End(move down, t)

| End(move up, t))
→ now - t move¿ t)

& FORALL t, t1: time
( t6 now
& End(arrive, t)
& ( End(move up, t1)

| End(move down, t1))
→ t¡ t1)

EXIT
IF going up′
THEN position= position’ + 1
ELSE position= position’ - 1
FI

In order to improve the accuracy of the sequence generator for these processes, it
would be necessary to examine sequences back to a transition that causes a contra-
diction. This is a nonterminating procedure, however, whenever the second transition
of a successor obligation actually is a successor of the +rst, thus it is necessary to
specify termination conditions such as a speci+c number of transitions into the past
or similar criteria. In general, this procedure is not worth the additional time it would
require unless the number of successors that could be eliminated using a small num-
ber of backward steps is signi+cantly higher than the number of actual successors.
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As an alternative, the user can fully constrain all of the state variables in the entry
assertions.

The second factor that contributes to the diDerence between the number of prov-
able successors and the number computed by the try-seq-gen strategies is the use of
timed operators to de+ne the sequencing between diDerent operations. For example,
the end operator is used in the arrive transition to prevent arrive from following itself.
In the proof of the successor obligation arrive not arrive, arrive +res at t1 and t2 and
no other transition +res in between. By the last conjunct of arrive’s entry assertion,
there must be an end to move up or move down between the last time arrive ended
(t1+arrive dur) and the next time it +res (t2), which contradicts the fact that no tran-
sition +res in between t1 and t2. This proof cannot be carried out without the use
of the end operator. The de+nition of the end operator within PVS, however, is quite
complex with several quanti+ers, thus there is little hope that PVS could automatically
prove such an obligation. For this reason, my-grind is applied, which prevents work
from being wasted.

6.2.4. Parameterized transition sequences
When a transition is parameterized, such as the request Aoor transition of the Ele-

vator Button Panel process shown in Section 2, each set of parameters represents one
possible choice that a process can make. Usually, the start of a transition with one set
of parameters does not preclude the start of the same transition with a diDerent set
of parameters immediately afterward. Thus, the sequences generated for parameterized
transitions do not usually give any helpful information to the user since essentially any
transition can follow any other.

Since the standard sequence generator proof obligations do not ordinarily produce a
useful result for parameterized transitions, a parameterized extension has been added
to the sequence generator. In this extension, if two transitions have the same parame-
ter list (i.e. the same number of parameters and parameter types), the successor proof
obligations are attempted assuming that the parameters are the same. That is, the se-
quences are generated with a +xed set of parameters among consecutive transitions.
This is useful for +nding the sequence of transitions in a single “thread”. For example,
by keeping the parameters +xed in the Elevator Button Panel, it can be determined
that the same Aoor cannot be requested twice in a row. The numbers in Table 3 were
computed using the parameterized extension. The numbers for the Elevator Button
Panel, Central Control, and Controller processes are the only processes aDected by this
extension.

6.2.5. Transition sequence construction
After the successors have been computed, the sequence generator constructs transition

sequences based on input from the user, which includes the +rst and last transitions, the
direction to generate sequences from the +rst transition, the maximum number of tran-
sitions per sequence, and the maximum number of sequences. There is also an option to
disallow sequences in which the same transition appears more than once (besides as the
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+rst or last transition). The user must provide the maximum number of transitions per
sequence and if the search is backward, must provide the +rst transition. The sequence
generation process is completely automatic and is available as a component of the AS-
TRAL Software Development Environment (SDE) [22]. The ASTRAL SDE constructs
the sequence generator obligations, invokes PVS, runs the proof scripts, retrieves the
results, and then generates the sequences according to the user query. Since running
the proof scripts can be time consuming, the results are saved between changes to the
speci+cation, so that sequences from previous proof attempts can be quickly displayed.

For each sequence generated, an approximate running time of the sequence is con-
structed by analyzing the entry assertion of each transition. Entry assertions depend on
the values of local and imported variables, the call=start=end times of local and im-
ported transitions, and the current time in the system. Transitions that only depend on
local variables and=or the start=end times of local transitions will always +re immedi-
ately after another transition. Transitions that reference the current time, however, may
be delayed some amount of time before +ring. For example, the door stop transition,
shown in Section 6.1, +res at least t move door after the door starts moving. Similarly,
transitions may wait inde+nitely for a change to an imported variable, a call=start=end
to an imported transition, or a call to a local transition from the external environment.
The three types of delays are denoted delay T for a time delay, delay O for a de-
lay because of the other processes in the system, and delay E for a delay due to the
external environment.

The sequence generator is complete (i.e. if a sequence is possible it will appear as
a result) without the parameterized extension since the successor obligations are per-
formed using the PVS encoding, which will only eliminate a successor if it is derivable
that it cannot occur. The sequence generator is not complete with the parameterized
extension because it does not display any sequences in which two parameterized tran-
sitions with the same parameter lists are given diDerent parameters. In this case, utility
was chosen over completeness.

The accuracy of the sequence generator can be improved by manually performing
the proofs of those successor obligations that actually can be proved but could not
be automatically proved by the try-seq-gen strategies. The time used to run the proof
scripts or to re+ne the performance of the sequence generator is not wasted because
any successor eliminated can be used as a lemma in the main proof obligations.

As a simple example of a sequence generator query, consider the door stop case that
failed in the try-untimed proof of “elevator moving→∼door open” in Sect-
ion 6.1. The user may wish to view the predecessors to door stop to see if the proof
can be completed quickly or if a violation is possible involving the door stop transition.
Fig. 7 shows the sequence generator dialog box and the second of the three sequences
generated from the query.

Three sequences are returned to the user, which show three possible predecessors to
door stop: close door, open door, and arrive. If close door +res before door stop, the
door is closed when door stop completes +ring, thus the property trivially holds. The
open door transition sets elevator moving to false, thus the property also trivially holds
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Fig. 7. Sequence generator dialog box and query result.

if open door +res before door stop. The arrive transition, shown earlier, requires the
elevator car to be moving to +re. By the inductive hypothesis, the door is closed when
it +res, thus if arrive precedes door stop, the invariant can be violated because the
elevator car is moving and door stop sets door open to true. Therefore, the user knows
that to complete the proof, it must be shown that arrive cannot +re immediately before
door stop. The arrive case is another example of a successor that the sequence generator
could not eliminate automatically and yet is not actually possible after further analysis.
Thus, the user must consider the predecessors of arrive and continue the proof process
in a similar manner until the property is proved. Additional uses of the transition
sequence generator can be found in [21].

6.3. Timed formulas

The proof assistance for timed formulas cannot be fully automated like many untimed
formulas, thus the strategies for timed formulas are based on +nding the transition
sequences that are possible in a given process type. All ASTRAL requirements are
based on the current time, the values of local variables, the call, start, and end times
of local transitions, the values of imported variables, and the call, start, and end times
of imported transitions. From a sequence of transitions, all of this information can
be derived, thus any ASTRAL requirement can be proven (if possible) by analyzing
transition sequences. The start and end times of local transitions can be found directly
from the sequence. The values of local variables can be derived from the entry and
exit assertions of each transition in the sequence. The values of imported variables and
the call, start, and end times of imported transitions can be derived from the imported
variable clause using the values of exported local variables and the start and end
times of exported local transitions. The call times of exported local transitions can be
derived from the environment clause using the values of exported local and imported
variables and the start and end times of exported local and imported transitions. Finally,
a symbolic value for the current time can be derived from the sequence using the other
information and the entry assertion of each transition.
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Fig. 8. A delayed backward step.

Timed transition steps are broken down into forward and backward steps and im-
mediate and delayed steps and are always computed from a given time that a speci+c
transition +red. Forward steps compute the transitions that can +re right after the
given transition while backward steps compute the transitions that could have +red
right before the given transition. Immediate steps compute the transitions that can +re
immediately after or before the given transition while delayed steps compute the tran-
sitions that can +re after or before the given transition with some speci+c delay. PVS
strategies have been developed for all of these types of steps in the step-fw-immediate,
step-fw-delay, step-bw-immediate, and step-bw-delay strategies. These strategies are re-
peatedly applied until enough information is present in the sequent to +nish the proof.
Only the step-bw-delay strategy will be discussed, which is the most involved of all of
the strategies. This strategy is highly complex, requiring 207 lines of strategy code for
its de+nition. An equivalent proof by hand would contain numerous opportunities to
waste time and duplicate work as discussed in Section 1. By encapsulating all of the
steps within a prede+ned strategy and utilizing the most eFcient ordering in a highly
automated procedure, the user’s potential eFciency and eDectiveness is maximized.

The step-bw-delay strategy computes the transitions that could have +red a given
time right before a given transition. This strategy takes a “source” transition, tr from,
the time it +red, t from, a “destination” transition, tr to, and the time it is to end, t to.
It then performs the necessary proof steps to show that tr to is the last transition to
end and that it ends at t to as shown in Fig. 8. In order to show this, +ve subgoals
must be proved.
• t from−t to¿0: This strategy is only meant to be used when there is a delay between

the start of tr from and the end of tr to. If there is no delay, then the step-bw-
immediate strategy should be used instead since more of it can be fully automated.
The strategy attempts to discharge this subgoal with the PVS assert command. This
may or may not +nish the proof depending on the forms of t from and t to. If
either of these expressions has a complex form, it may be necessary for the user to
complete this proof by introducing type predicates for the terms in each expression.

• Some transition ended before t from: The strategy attempts to discharge this sub-
goal by achieving a contradiction between the initial state and the state at t from.
This is possible because if no transition ends before t from, then the variables could
not have changed value since the initial state. The strategy invokes my-grind, which
in most cases will be suFcient to +nish the proof. In the cases where it is not suF-
cient, the user must complete the proof by expanding timed operators or introducing
relevant assumptions that require some transition to end between the initial state and
t from.
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• The transition that ended last was tr to: Since there is a transition that ended before
t from, there is a transition that ends last by an appropriate ASTRAL lemma. The
strategy attempts to discharge this subgoal by showing that the transitions besides
tr to could not have been the last to end or else a contradiction could be achieved
between the entry=exit of those transitions and the entry of tr from. This step is
performed in a similar manner to proving the sequence generator obligations and fails
for similar reasons. In this case, however, more information, such as the inductive
invariant=schedule, is available to PVS, which makes this step more likely to succeed.
When it fails, however, the user must prove the contradictions manually by expanding
timed operators and=or stepping backwards appropriately.

• tr to did not end before t to: Once it is shown that tr to was the last transition to
end, it must be shown that tr to ended at t to. The strategy attempts to show that if
tr to ended earlier than t to, then tr from would +re earlier than t from. In this case,
if tr from ended before t from, then a contradiction is achieved with the fact that
nothing ended between the end of tr to and t from. If tr from did not end before
t from, then by trans mutex, tr from could not +re at t from. The main thing the
user must prove in this step is that tr from is enabled after the given delay elapses
from the end of tr to. This will usually require expanding timed operators in the
entry assertion of tr from.

• tr to did not end after t to: The strategy attempts to discharge this subgoal in a
similar manner to the previous step. In this case, it must be shown that if tr to ends
later than t to, then tr from could not be enabled (hence +re) at t from. Since the
entry assertion of tr from is most likely dependent on timed operators, the user must
expand these operators appropriately.
If tr from is not delayed due to timed operators, then it must be delayed by other
processes or the external environment. In these cases, it must be shown that the
change to the operating environment was delayed in response to some change made
by tr to. Otherwise, it will not be possible to prove this subgoal because the operating
environment must have changed at t from, which means that tr from will still be
enabled.
These +ve subgoals are suFcient to show that tr to ends at t to. The +rst subgoal

shows that there is a nonzero delay between the end of tr to and the start of tr from.
The second subgoal shows that there has been some transition that has +red in the
execution history of the process. If no transition has +red, then tr to cannot possibly
have +red before tr from. The third subgoal shows that the last transition to end was
tr to. Finally, the last two subgoals show that tr to did not +re too early or too late,
respectively.

6.4. Theorem proving results

Overall, 21 strategies were developed to assist in the analysis of ASTRAL speci+ca-
tions. Table 4 shows the results of using PVS and the developed strategies to prove the
proof obligations of the testbed systems. The results of the theorem prover proofs and
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Table 4
Results of theorem proving on testbed systems

System Total Attempted Completed Prover
obligations obligations obligations commands

Bakery algorithm 21 18 17 466
Cruise control 9 9 9 535
Elevator 33 13 12 234
Olympic boxing 18 17 17 1073
Phone 51 25 16 172
Production cell 69 37 31 903
Railroad crossing 14 10 8 1367
Stoplight 24 18 0 29
Total 239 147 110 4779

earlier proofs by hand are the basis for a systematic analysis methodology described
in [21] in which tool-supported guidance is given for constructing proof sketches by
hand, which are then carried out in a similar fashion within PVS. As can be seen, ap-
proximately half of the total number of proof obligations were completely discharged
using the prover. All of the obligations of the cruise control system and the Olympic
boxing scoring system speci+cations were completely discharged with the exception
of the global schedule of the scoring system. This schedule, however, is not provable
due to a Aaw in the scoring system itself and not in the speci+cation. Namely, it is
possible for a boxer to obtain more total points and yet still lose the +ght.

In Table 4, the number of proof obligations attempted indicates how many proofs
were started, but not completed. The meaning of this number varies from system to
system. In some cases, such as the railroad crossing, a signi+cant portion of the proofs
that were not completed were performed. For example, in the proof of the Gate sched-
ule, one of the two worst cases was proved, which demonstrated how all of the others
could be proved. In the case of the obligations of the stoplight control system, however,
only a small number of approaches were tried. The number of prover commands gives
an estimate of the eDort associated with each system. These numbers only include the
latest attempt of each obligation and do not include earlier attempts or backtracking,
which would make the numbers signi+cantly higher.

The systems besides the cruise control system and the scoring system were not com-
pletely proved due to a number of factors. The foremost reason is that as more and
more of the obligations were discharged, it became evident that most of the proofs had
similar themes and could be proved using the same techniques as earlier proofs. Thus,
once enough mechanisms were developed to deal with the most common themes, it
became less critical to actually complete every proof. This was the case for the bakery
algorithm, the production cell, and the railroad crossing speci+cations. The other factor
is that some of the processes exhibit behavior that is extremely nontrivial to reason
about within a theorem prover. This was the case for the elevator control system and
phone system.

One of the central themes of the proofs of the response requirements of the elevator
is +nding the maximum number of full iterations that the elevator can execute before
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the requested Aoor is reached. The main diFculty arises when it must be proved that
this number is actually the worst case and that the other cases are subsumed. This
type of proof is common to all real-time systems, but in the Elevator process, it is
signi+cantly more diFcult to prove. Unlike other process types in which the worst case
usually covers one or two basic process cycles, in the Elevator process, the worst case
can encompass an arbitrary number of cycles. This is because the Elevator stores an
iteration count (i.e. the current position) that aDects its behavior and that is used in the
requirements. The maximum position is a symbolic value and at each of the arbitrarily
many Aoors, a series of complex actions must be performed. The worst case must
then be shown to be the appropriate case where the elevator travels the maximum
symbolically constrained number of Aoors with complex reasoning required at each
Aoor. Processes with this type of behavior are discussed in [23] and are referred to as
iterative single-threaded processes. That is, they record some notion of which iteration
they are on such as a loop count or queue length and must perform a complex series of
actions in each iteration. In order to deal with these types of processes, new theorem
prover techniques must be developed.

One of the central themes of the proofs of response requirements of the phone sys-
tem is +nding the maximum number of phones that can have requests outstanding at
any given time. This is equivalent to +nding the cardinality of the set of transitions
that service those requests that are enabled at a given time. In a hand proof, such a
cardinality can be found fairly quickly based mostly on human ingenuity and “hand
waving”. In PVS, however, cardinality proofs are extremely complex and become even
more so when the set predicate is nontrivial. For the set of enabled transitions, the set
predicate (i.e. is a speci+c transition enabled at the given time) is highly nontrivial as
it depends on the arbitrary +rst-order logic expressions of the transition entry assertion
as well as the execution history of the process and the behavior of the operating envi-
ronment. Thus, determining the cardinality of this set within PVS becomes intractable.
Further research is necessary to make such a proof feasible.

Although additional theorem prover techniques are needed for process types such as
the elevator control system and the phone system, these processes compromise only
two of 25 of the processes in the testbed systems. Given that the testbed systems are
a random sample taken from existing literature, it is likely that simpler process types
make up the signi+cant majority of real-world systems as well. This is also a reasonable
assumption because every complex process is inevitably surrounded by a number of
simple processes such as buttons, sensors, and other input=output processes that support
it. This means that the techniques described in this paper should be directly applicable
to most real-time systems.

7. Related work

The encoding of several hardware description languages into HOL is discussed in
[4]. Two diDerent encoding styles are introduced, referred to as deep encodings and
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shallow encodings. In a shallow encoding, the theorem prover representation mirrors the
syntactic representation of the language being encoded. In a deep encoding, however,
the semantics of the language is encoded within the logic of the prover without regard to
syntactical features. In this terminology, the ASTRAL encoding is a shallow encoding
since it was desired to keep the PVS representation as close as possible to the ASTRAL
language.

The real-time temporal logic TRIO has been encoded into PVS [1] as discussed
in Section 4.1. TRIO is very closely related to ASTRAL and is, in fact, the basis
for the core ASTRAL logic [13]. TRIO does not have the structural mechanisms or
abstract machine de+nition of ASTRAL, however, thus is a lower-level formalism. The
encoding style used for TRIO diDers from that of ASTRAL as discussed in Section 4.1,
but the goal of keeping the encoding similar to that of the base language is the same.
There is no discussion, however, of any strategies developed that can assist the user
in performing proofs.

Conversely, the Duration Calculus encoding [28] is very similar to ASTRALs as
discussed in Section 4.1 and is also supported by a large number of automated strate-
gies. The duration calculus is a real-time temporal logic, however, as opposed to the
state machine approach of ASTRAL.

Several real-time state machine languages have also been encoded into theorem
provers. The Timed Automaton Model has been encoded into PVS [2] and Timed
Transition Systems into HOL [16]. These languages are based on interleaved concur-
rency, however, which makes their semantics simpler than those of ASTRAL. Addi-
tionally, timed transition systems are not de+ned in terms of arbitrary +rst-order logic
expressions and do not have the complex subtyping mechanisms that are available in
ASTRAL.

The timed automaton model encoding is supported by PVS strategies similar to the
ones found in Section 6 [3]. Several of the strategies correspond closely with the
strategies developed for ASTRAL. Most notably, the last- and +rst-event strategies
have a function similar to the step-bw and step-fw strategies. This indicates that such
strategies are useful for many diDerent real-time speci+cation languages and not just
ASTRAL. Although [3] does provide several useful techniques for allowing the PVS
proofs to correspond closely to hand proofs, what is lacking is any guidance on how
the hand proof is to be constructed as is discussed for ASTRAL in [21].

An encoding of ASTRAL into PVS was reported in [5, 6], but this encoding is based
on a de+nition of ASTRAL that has been developed independently at Delft University
based on earlier ASTRAL work in [12, 13]. The ASTRAL de+nition in [12, 13] did not
include the notion of an external environment, thus did not include the call operator,
environmental assumptions, or schedules. The Delft de+nition has diverged from the
work reported in [7] and [8] and has essentially become a diDerent language. It includes
only a small subset of the full set of ASTRAL operators and typing options, does not
include all of the sections of an ASTRAL speci+cation, and de+nes only a small
fraction of the axiomatization of the ASTRAL abstract machine. In addition, it is
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based on a discrete time domain and proofs are performed with a global view of the
system rather than using a modular approach.

8. Conclusions and future work

This paper has discussed the adaptation of the PVS theorem prover for performing
analysis of real-time systems written in the ASTRAL formal speci+cation language. The
encoding attempts to minimize the diDerences between an ASTRAL speci+cation and
its PVS equivalent to allow the user to interpret results more easily. The decisions made
for ASTRAL on a number of encoding issues were highlighted. From the proof attempts
of a variety of diDerent real-time systems, a number of strategies were developed that
encapsulate frequently occurring proof patterns and provide signi+cant assistance to the
user during PVS proofs. Finally, a transition sequence generation tool was implemented
using the PVS encoding that provides valuable information to the user throughout the
proof process.

A number of issues still need to be addressed in future work. The implemen-
tation clause of ASTRAL, which is used to map relationships between upper and
lower level speci+cations, needs to be incorporated into the translator, as well as the
inter-level proof obligations used to show that an implementation is consistent with the
level above. The re+nement mechanism described in [9] has recently been completely
reworked in [24], thus the translation had been postponed until this new mechanism
was put in place.

A number of enhancements to the sequence generator can be added. For instance, it
is useful to provide a more powerful interface. For example, a query interface could
be added to answer queries such as whether a given transition can ever occur between
two other speci+ed transitions. It is also possible to construct a symbolic expression
for the values of the state variables at the end of each sequence by examining the
entry and exit assertions of each transition.

In general, more proofs need to be performed for diDerent ASTRAL systems using
their PVS translations. In studying the proofs performed for many systems, more proof
patterns may be discovered that can be incorporated into suitable PVS strategies. The
patterns may also lead to the de+nition of useful lemmas that can be proven in advance
and added to the ASTRAL–PVS library for future use. It is also worthwhile to investi-
gate whether the structure of the ASTRAL speci+cation determines which lemmas and
strategies are most applicable to a given formula type.

Finally, as discussed in Section 6.4, there is a need for additional theorem prover
techniques for process types similar to the elevator control system and phone system.
In [21], it is discussed how to statically identify these types of processes. For process
types similar to the elevator system, it is necessary to support “worst case” reasoning
over iteration counts and to allow the other cases to be implicitly subsumed. For



90 P.Z. Kolano / Theoretical Computer Science 282 (2002) 53–99

process types similar to the phone system, it is necessary to support reasoning about
the cardinality of complex sets. To provide the necessary support for these processes
types, a more in-depth study of the capabilities of the theorem prover is needed.

Appendix

SPECIFICATION Elevator_System
GLOBAL SPECIFICATION Elevator_System

PROCESSES
the_elevator: Elevator,
the_elevator_buttons: Elevator_Button_Panel,
the_floor_buttons: array [ 1..n_floors ] of Floor_Button_Panel

TYPE
pos_integer: TYPEDEF i: integer ( i > 0 ) ,
pos_real: TYPEDEF r: real ( r > 0 ) ,
floor: TYPEDEF i: pos_integer ( i <= n_floors )

CONSTANT
n_floors: pos_integer,
request_dur, clear_dur: pos_real,
t_service_request, t_move, t_stop, t_move_door: pos_real

AXIOM
/* clear_request must be able to fire no matter how many requests are made

while the elevator door is opening */
( clear_dur + n_floors * request_dur < t_move_door )

/* must be at least 2 floors in the building */
& ( n_floors >= 2 )

SCHEDULE
/* any request must be serviced within time t_service_request */

FORALL f: floor
( the_elevator_buttons.Call ( request_floor ( f ) ,

now - t_service_request )
-> EXISTS t: time

( now - t_service_request < t
& t <= now
& past ( the_elevator.position, t ) = f
& past ( Change ( the_elevator.door_open, t ) , t )
& past ( the_elevator.door_open, t ) ) )

& FORALL f: floor
( f ~= n_floors
& the_floor_buttons [ f ] .Call ( request_up,

now - t_service_request )
-> EXISTS t: time

( now - t_service_request < t
& t <= now
& past ( the_elevator.position, t ) = f
& past ( Change ( the_elevator.door_open, t ) , t )
& past ( the_elevator.door_open, t )
& past ( the_elevator.going_up, t ) ) )

& FORALL f: floor
( f ~= 1
& the_floor_buttons [ f ] .Call ( request_down,

now - t_service_request )
-> EXISTS t: time

( now - t_service_request < t
& t <= now
& past ( the_elevator.position, t ) = f
& past ( Change ( the_elevator.door_open, t ) , t )
& past ( the_elevator.door_open, t )
& ~past ( the_elevator.going_up, t ) ) )
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END Elevator_System
PROCESS SPECIFICATION Elevator

LEVEL Top_Level
IMPORT

pos_real, floor, request_dur, the_elevator_buttons, the_floor_buttons,
the_elevator_buttons.floor_requested, the_elevator_buttons.request_floor,
the_floor_buttons.up_requested, the_floor_buttons.down_requested,
the_floor_buttons.request_up, the_floor_buttons.request_down, t_stop,
t_move, t_move_door, t_service_request, n_floors

EXPORT
position, going_up, door_open, moving, door_moving

CONSTANT
move_dur, arrive_dur, open_dur, close_dur, door_stop_dur: pos_real

VARIABLE
position: floor,
going_up, door_open, moving, door_moving: boolean

AXIOM
/* t_service_request must be big enough to handle the worst case. One instance of

the worst case is when the elevator is moving up from floor 1 to 2 and 2 has
not been requested on the elevator panel nor has any request been made on 2’s
button panel. Let t_arrive be the next time such that End(arrive, t_arrive).
up_request and down_request are simultaneously called on floor 2 an "instant"
after t_arrive - 2 * request_dur and down_request fires first. In addition,
every floor in the building (besides 2) has up_requested (except the top floor)
and down_requested (except the bottom floor). Thus, the up request is not
posted in time for the elevator to service it and the elevator must stop and
open the door at every floor up to the top, back down to the bottom, and back
up to 2. */

( t_service_request >= 2 * request_dur + move_dur + t_move + arrive_dur +
( 2 * n_floors - 3 ) *
( open_dur + t_move_door + door_stop_dur + t_stop + close_dur +

t_move_door + door_stop_dur + request_dur + move_dur + t_move +
arrive_dur ) + open_dur + t_move_door + door_stop_dur )

DEFINE
request_above ( f0: floor ) : boolean ==

EXISTS f: floor
( f > f0
& ( the_elevator_buttons.floor_requested ( f )

| the_floor_buttons [ f ] .up_requested
| the_floor_buttons [ f ] .down_requested ) ) ,

request_below ( f0: floor ) : boolean ==
EXISTS f: floor

( f < f0
& ( the_elevator_buttons.floor_requested ( f )

| the_floor_buttons [ f ] .up_requested
| the_floor_buttons [ f ] .down_requested ) )

INITIAL
position = 1

& going_up
& ~door_open
& ~moving
& ~door_moving

INVARIANT
/* the elevator door must stay closed while the elevator is moving */

( moving
-> ~door_open

& ~door_moving )
CONSTRAINT

/* if the elevator changes direction, there cannot be an outstanding request in
the old direction */

( going_up
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& ~going_up’
-> ~request_below’ ( position’ ) )
& ( ~going_up

& going_up’
-> ~request_above’ ( position’ ) )

SCHEDULE
/* if the elevator is moving in some direction, there must be an outstanding

request in that direction */
( moving
& going_up

-> request_above ( position ) )
& ( moving

& ~going_up
-> request_below ( position ) )

/* any request must be serviced within time t_service_request */
& ( FORALL f: floor

( the_elevator_buttons.Call ( request_floor ( f ) ,
now - t_service_request )

-> EXISTS t: time
( now - t_service_request < t
& t <= now
& past ( position, t ) = f
& past ( Change ( door_open, t ) , t )
& past ( door_open, t ) ) ) )

& ( FORALL f: floor
( f ~= n_floors
& the_floor_buttons [ f ] .Call ( request_up,

now - t_service_request )
-> EXISTS t: time

( now - t_service_request < t
& t <= now
& past ( position, t ) = f
& past ( Change ( door_open, t ) , t )
& past ( door_open, t )
& past ( going_up, t ) ) )

& FORALL f: floor
( f ~= 1
& the_floor_buttons [ f ] .Call ( request_down,

now - t_service_request )
-> EXISTS t: time

( now - t_service_request < t
& t <= now
& past ( position, t ) = f
& past ( Change ( door_open, t ) , t )
& past ( door_open, t )
& ~past ( going_up, t ) ) ) )

IMPORTED VARIABLE
/* buttons only clear after elevator has arrived and started opening the doors */

( FORALL f: floor
( Change ( the_elevator_buttons.floor_requested ( f ) , now )
& ~the_elevator_buttons.floor_requested ( f )

-> EXISTS t: time
( Change [ 2 ]

( the_elevator_buttons.floor_requested(f)) < t
& t <= now
& past ( position, t ) = f
& ~past ( door_open, t )
& past ( door_moving, t ) ) ) )

& ( FORALL f: floor
( f ~= n_floors
& Change ( the_floor_buttons [ f ] .up_requested, now )
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& ~the_floor_buttons [ f ] .up_requested
-> EXISTS t: time

( Change [ 2 ]
( the_floor_buttons [ f ] .up_requested ) < t

& t <= now
& past ( position, t ) = f
& ~past ( door_open, t )
& past ( door_moving, t )
& past ( going_up, t ) ) ) )

& ( FORALL f: floor
( f ~= 1
& Change ( the_floor_buttons [ f ] .down_requested, now )
& ~the_floor_buttons [ f ] .down_requested

-> EXISTS t: time
( Change [ 2 ]

( the_floor_buttons [ f ] .down_requested ) < t
& t <= now
& past ( position, t ) = f
& ~past ( door_open, t )
& past ( door_moving, t )
& ~past ( going_up, t ) ) ) )

/* the top floor never has an up request and the bottom floor never has a down
request */
& ( ~the_floor_buttons [ n_floors ] .up_requested )
& ( ~the_floor_buttons [ 1 ] .down_requested )

/* requests cannot be made of the elevator to stop at a floor between when the
door starts opening on that floor until when it starts closing */
& ( Change ( door_moving, now )

& door_moving
& door_open

-> FORALL t: time
( t >= Change [ 2 ] ( door_moving )

-> ~the_elevator_buttons.Call ( request_floor ( position ), t))
/* requests cannot be made of the elevator to stop at a floor between when the

door starts opening on that floor until when it starts closing */
& ( Change ( door_moving, now )

& door_moving
& door_open

-> FORALL t: time
( t >= Change [ 2 ] ( door_moving )

-> ( past ( going_up, t )
-> ~the_floor_buttons [ position ] .Call ( request_up, t ) )
& ( past ( ~going_up, t )
-> ~the_floor_buttons[ position ].Call ( request_down, t))))

TRANSITION move_up
ENTRY [ TIME : move_dur ]

~door_open
& ~door_moving
& request_above ( position )
& ( going_up

| ~going_up
& ~request_below ( position )
& ~the_floor_buttons [ position ] .up_requested )

& ( End ( arrive, now )
& ~the_elevator_buttons.floor_requested ( position )
& ~the_floor_buttons [ position ] .up_requested

| FORALL t, t1: time
( Change ( moving, t )
& Change ( door_open, t1 )

-> t < t1
& now >= t1 + request_dur ) )
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EXIT
moving

& going_up
TRANSITION move_down

ENTRY [ TIME : move_dur ]
~door_open

& ~door_moving
& request_below ( position )
& ( ~going_up

| going_up
& ~request_above ( position )
& ~the_floor_buttons [ position ] .down_requested )

& ( End ( arrive, now )
& ~the_elevator_buttons.floor_requested ( position )
& ~the_floor_buttons [ position ] .down_requested

| FORALL t, t1: time
( Change ( moving, t )
& Change ( door_open, t1 )

-> t < t1
& now >= t1 + request_dur ) )

EXIT
moving

& ~going_up
TRANSITION arrive

ENTRY [ TIME : arrive_dur ]
moving

& FORALL t: time
( t <= now
& ( End ( move_down, t )

| End ( move_up, t ) )
-> now - t_move >= t )

& FORALL t, t1: time
( t <= now
& End ( arrive, t )
& ( End ( move_up, t1 )

| End ( move_down, t1 ) )
-> t < t1 )

EXIT
IF

going_up’
THEN

position = position’ + 1
ELSE

position = position’ - 1
FI

TRANSITION open_door
ENTRY [ TIME : open_dur ]

~door_open
& ~door_moving
& ( ~moving

| moving
& EXISTS t: time

( Change ( position, t )
& t > Change ( moving ) ) )

& ( the_elevator_buttons.floor_requested ( position )
| going_up
& ( the_floor_buttons [ position ] .up_requested

| ~request_above ( position )
& the_floor_buttons [ position ] .down_requested )

| ~going_up
& ( the_floor_buttons [ position ] .down_requested
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| ~request_below ( position )
& the_floor_buttons [ position ] .up_requested ) )

EXIT
~moving

& door_moving
& going_up = ( going_up’

& ( request_above’ ( position’ )
| the_floor_buttons [ position’ ] .up_requested’ )

| ~request_below’ ( position’ )
& ~the_floor_buttons [ position’ ] .down_requested’ )

TRANSITION close_door
ENTRY [ TIME : close_dur ]

door_open
& ~door_moving
& now - t_stop >= Change ( door_open )

EXIT
door_moving

TRANSITION door_stop
ENTRY [ TIME : door_stop_dur ]

door_moving
& now - t_move_door >= Change ( door_moving )

EXIT
~door_moving

& door_open = ~door_open’
END Top_Level

END Elevator

PROCESS SPECIFICATION Elevator_Button_Panel
LEVEL Top_Level

IMPORT
floor, request_dur, clear_dur, the_elevator, the_elevator.position,
the_elevator.door_open, the_elevator.door_moving

EXPORT
floor_requested, request_floor

VARIABLE
floor_requested ( floor ) : boolean

ENVIRONMENT
/* multiple button pushes should have no effect */

( FORALL f: floor
( Change ( floor_requested ( f ) , now )
& ~floor_requested ( f )

-> FORALL t: time
( Start ( request_floor ( f ) ) <= t
& t <= now

-> ~Call ( request_floor ( f ) , t ) ) ) )
/* requests cannot be made of the elevator to stop at a floor between when the

door starts opening on that floor until when it starts closing */
& ( Change ( the_elevator.door_moving, now )

& the_elevator.door_moving
& the_elevator.door_open

-> FORALL t: time
( t >= Change [ 2 ] ( the_elevator.door_moving )

-> ~Call ( request_floor ( the_elevator.position ) , t ) ) )
INITIAL

FORALL f: floor
( ~floor_requested ( f ) )

INVARIANT
/* buttons only clear after elevator has arrived and started opening the doors */

( FORALL f: floor
( Change ( floor_requested ( f ) , now )
& ~floor_requested ( f )
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-> EXISTS t: time
( Change [ 2 ] ( floor_requested ( f ) ) < t
& t <= now
& past ( the_elevator.position, t ) = f
& ~past ( the_elevator.door_open, t )
& past ( the_elevator.door_moving, t ) ) ) )

TRANSITION request_floor ( f: floor )
ENTRY [ TIME : request_dur ]

~floor_requested ( f )
EXIT

floor_requested ( f ) Becomes TRUE
TRANSITION clear_floor_request

ENTRY [ TIME : clear_dur ]
floor_requested ( the_elevator.position )

& ~the_elevator.door_open
& the_elevator.door_moving

EXIT
floor_requested ( the_elevator.position ) Becomes FALSE

END Top_Level
END Elevator_Button_Panel

PROCESS SPECIFICATION Floor_Button_Panel
LEVEL Top_Level

IMPORT
request_dur, clear_dur, the_floor_buttons, the_elevator,
the_elevator.position, the_elevator.door_open, the_elevator.going_up,
the_elevator.door_moving, n_floors

EXPORT
up_requested, down_requested, request_up, request_down

VARIABLE
up_requested, down_requested: boolean

ENVIRONMENT
/* multiple button pushes should have no effect */

( Change ( up_requested, now )
& ~up_requested

-> FORALL t: time
( Start ( request_up ) <= t
& t <= now

-> ~Call ( request_up, t ) ) )
& ( Change ( down_requested, now )

& ~down_requested
-> FORALL t: time

( Start ( request_down ) <= t
& t <= now

-> ~Call ( request_down, t ) ) )
/* requests cannot be made of the elevator to stop at a floor between when the

door starts opening on that floor until when it starts closing */
& ( Change ( the_elevator.door_moving, now )

& the_elevator.door_moving
& the_elevator.door_open
& the_floor_buttons [ the_elevator.position ] = Self

-> FORALL t: time
( t >= Change [ 2 ] ( the_elevator.door_moving )

-> ( past ( the_elevator.going_up, t )
-> ~Call ( request_up, t ) )
& ( past ( ~the_elevator.going_up, t )
-> ~Call ( request_down, t ) ) ) )

INITIAL
~up_requested

& ~down_requested
INVARIANT
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/* buttons only clear after elevator has arrived and started opening the doors */
( Change ( up_requested, now )
& ~up_requested

-> EXISTS t: time
( Change [ 2 ] ( up_requested ) < t
& t <= now
& the_floor_buttons [ past ( the_elevator.position, t)] = Self
& ~past ( the_elevator.door_open, t )
& past ( the_elevator.door_moving, t )
& past ( the_elevator.going_up, t ) ) )

& ( Change ( down_requested, now )
& ~down_requested

-> EXISTS t: time
( Change [ 2 ] ( down_requested ) < t
& t <= now
& the_floor_buttons [ past ( the_elevator.position, t)] = Self
& ~past ( the_elevator.door_open, t )
& past ( the_elevator.door_moving, t )
& ~past ( the_elevator.going_up, t ) ) )

/* the top floor never has an up request and the bottom floor never has a down
request */
& ( the_floor_buttons [ n_floors ] = Self
-> ~up_requested )
& ( the_floor_buttons [ 1 ] = Self
-> ~down_requested )

SCHEDULE
/* calls will be posted within 2 * request_dur time */

( Call ( request_up, now - 2 * request_dur )
-> EXISTS t: time

( now - 2 * request_dur < t
& t <= now
& past ( Change ( up_requested, t ) , t )
& past ( up_requested, t ) ) )

& ( Call ( request_down, now - 2 * request_dur )
-> EXISTS t: time

( now - 2 * request_dur < t
& t <= now
& past ( Change ( down_requested, t ) , t )
& past ( down_requested, t ) ) )

TRANSITION request_up
ENTRY [ TIME : request_dur ]

~up_requested
& the_floor_buttons [ n_floors ] ~= Self

EXIT
up_requested

TRANSITION request_down
ENTRY [ TIME : request_dur ]

~down_requested
& the_floor_buttons [ 1 ] ~= Self

EXIT
down_requested

TRANSITION clear_up_request
ENTRY [ TIME : clear_dur ]

up_requested
& the_floor_buttons [ the_elevator.position ] = Self
& the_elevator.going_up
& ~the_elevator.door_open
& the_elevator.door_moving

EXIT
~up_requested

TRANSITION clear_down_request
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ENTRY [ TIME : clear_dur ]
down_requested

& the_floor_buttons [ the_elevator.position ] = Self
& ~the_elevator.going_up
& ~the_elevator.door_open
& the_elevator.door_moving

EXIT
~down_requested

END Top_Level
END Floor_Button_Panel

END Elevator_System
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